Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review
Angel Recalde (),
Ricardo Cajo (),
Washington Velasquez and
Manuel S. Alvarez-Alvarado
Additional contact information
Angel Recalde: Faculty of Electrical and Computer Engineering, Escuela Superior Politecnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
Ricardo Cajo: Faculty of Electrical and Computer Engineering, Escuela Superior Politecnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
Washington Velasquez: Faculty of Electrical and Computer Engineering, Escuela Superior Politecnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
Manuel S. Alvarez-Alvarado: Faculty of Electrical and Computer Engineering, Escuela Superior Politecnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
Energies, 2024, vol. 17, issue 13, 1-39
Abstract:
This paper provides a comprehensive review of machine learning strategies and optimization formulations employed in energy management systems (EMS) tailored for plug-in hybrid electric vehicles (PHEVs). EMS stands as a pivotal component facilitating optimized power distribution, predictive and adaptive control strategies, component health monitoring, and energy harvesting, thereby enabling the maximal exploitation of resources through optimal operation. Recent advancements have introduced innovative solutions such as Model Predictive Control (MPC), machine learning-based techniques, real-time optimization algorithms, hybrid optimization approaches, and the integration of fuzzy logic with neural networks, significantly enhancing the efficiency and performance of EMS. Additionally, multi-objective optimization, stochastic and robust optimization methods, and emerging quantum computing approaches are pushing the boundaries of EMS capabilities. Remarkable advancements have been made in data-driven modeling, decision-making, and real-time adjustments, propelling machine learning and optimization to the forefront of enhanced control systems for vehicular applications. However, despite these strides, there remain unexplored research avenues and challenges awaiting investigation. This review synthesizes existing knowledge, identifies gaps, and underscores the importance of continued inquiry to address unanswered research questions, thereby propelling the field toward further advancements in PHEV EMS design and implementation.
Keywords: machine learning; optimization technique; electric vehicles (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3059/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3059/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3059-:d:1419340
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().