EconPapers    
Economics at your fingertips  
 

An Artificial Neural Network Model for a Comprehensive Assessment of the Production Performance of Multiple Fractured Unconventional Tight Gas Wells

Łukasz Klimkowski ()
Additional contact information
Łukasz Klimkowski: Faculty of Drilling, Oil and Gas, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2024, vol. 17, issue 13, 1-26

Abstract: The potential of unconventional hydrocarbon resources has been unlocked since the hydraulic fracturing technique in combination with long horizontal wells was applied to develop this type of reservoir economically. The design and optimization of the fracturing treatment and the stimulated reservoir volume and the forecasting of production performance are crucial for the development and management of such resources. However, the production performance of tight gas reservoirs is a complicated nonlinear problem, described by many parameters loaded with uncertainty. The complexity of the problem influences and inspires the sophistication of the solution to be used. This paper proposed an artificial network model that allows for fast, extended, and accurate analyses of the production performance of multiple fractured unconventional tight gas wells. In the comprehensive approach developed, the reservoir rock parameters, the drainage area, and the hydraulic fracture parameters are treated as a variable input to the model. The analysis is no longer constrained by fixed “shoes box” geometry, and the values of the parameters defining the reservoir and stimulated volume are not limited to a few discrete values. The numerical experiment used to construct a database for model development was designed using a genetically optimized Latin hypercube sampling technique. A special approach was used in the preparation of “blind data”, which are crucial for truly reliable model verification. In the result, a developed tool offers an extended rock-fluid description, flexible model, and stimulated reservoir volume dimensioning and parameterization, as well as a high degree of applicability in sensitivity analysis and/or optimization.

Keywords: unconventional reservoirs; tight gas reservoirs; artificial neural network; production forecast; numerical simulation; intelligent model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3091/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3091/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3091-:d:1420450

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3091-:d:1420450