Development of Active Wind Vane for Low-Power Wind Turbines
Roberto Adrián González Domínguez,
Orlando Lastres Danguillecourt (),
Antonio Verde Añorve,
Guillermo Rogelio Ibáñez Duharte,
Andrés López López,
Javier Alonso Ramírez Torres and
Neín Farrera Vázquez
Additional contact information
Roberto Adrián González Domínguez: Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29014, Mexico
Orlando Lastres Danguillecourt: Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29014, Mexico
Antonio Verde Añorve: Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29014, Mexico
Guillermo Rogelio Ibáñez Duharte: Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29014, Mexico
Andrés López López: Centro de Investigación, Innovación y Desarrollo Tecnológico (CIIDETEC-UVM), Universidad del Valle de México, Tuxtla Gutiérrez 29056, Mexico
Javier Alonso Ramírez Torres: Centro de Investigación, Innovación y Desarrollo Tecnológico (CIIDETEC-UVM), Universidad del Valle de México, Tuxtla Gutiérrez 29056, Mexico
Neín Farrera Vázquez: Centro de Investigación, Innovación y Desarrollo Tecnológico (CIIDETEC-UVM), Universidad del Valle de México, Tuxtla Gutiérrez 29056, Mexico
Energies, 2024, vol. 17, issue 13, 1-13
Abstract:
This paper proposes the development of an active control system to control the power output of a low-power horizontal-axis wind turbine (HAWT) when operating at wind speeds above the rated wind speed. The system is composed of an active articulated vane (AAV) in charge of the orientation of the wind turbine, which is driven by an electric actuator that changes the angle of the AAV to maintain a constant power output. Compared with the passive power regulation systems most often used in low-power HAWTs, active systems allow for better control and, therefore, greater stability of the delivered power, which reduces the structural stresses and allows for controlled braking in any wind condition or during system failures. The control system was designed and simulated using MATLAB R2022b software, and then built and evaluated under laboratory conditions. For the control design, the transfer function (TF) between the pulse width modulation (PWM) and the AAV angle ( θ ) was determined via laboratory tests using MATLAB’s PIDTurner tool. For the simulation, the relationship between the power output and the AAV angle was determined using the vector decomposition of the wind speed and wind rotor area. Wind speed step and ramp response tests were performed for proportional–integral–derivative (PID) control. The results obtained demonstrate the technical feasibility of this type of control, obtaining settling times (ts) of 6.7 s in the step response and 2.8 s in the ramp response.
Keywords: control regime; low-power wind turbine; PID control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3123/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3123/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3123-:d:1421686
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().