A Water–Energy–Carbon–Economy Framework to Assess Resources and Environment Sustainability: A Case Study of the Yangtze River Economic Belt, China
Hua Zhu,
Qing Zhang and
Hailin You ()
Additional contact information
Hua Zhu: Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
Qing Zhang: School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Hailin You: Institute of Watershed Ecology, Jiangxi Academy of Sciences, Nanchang 330096, China
Energies, 2024, vol. 17, issue 13, 1-20
Abstract:
Developing a comprehensive research framework that integrates the water–energy–carbon (WEC) system with economic development is crucial to fostering sustainable development. However, common evaluation indicators for sustainable development fail to cover the most up-to-date climate objectives and policies comprehensively and also lack a decoupling analysis between various subsystems and economic development. By incorporating the Tapio model and the coupling coordination degree model (CCDM), we introduce a novel water–energy–carbon–economy (WECE) framework to evaluate the sustainability of regional resources and the environment. Taking the Yangtze River Economic Belt (YREB) as an example, we have constructed a comprehensive water–energy–carbon (WEC) indicator system that aligns with China’s sustainable development objectives and its most recent carbon emission reduction strategies. Employing the indicator system, we conducted an assessment of the sustainable development within the YREB from 2010 to 2019. The results reveal that the YREB has yet to achieve full decoupling between water use, energy consumption, carbon emissions, and economic development, with a prevailing trend towards weak decoupling (WD). The WEC system within the YREB exhibited coordination from 2010 to 2019. Notably, only the WEC system in Sichuan attained good coordination in 2019, indicating the imperative for more extensive initiatives in resource and environmental development to realize sustainable objectives. Finally, we delve into the driving mechanism of the coupling coordination degree (CCD) of the WEC system. Our findings suggest that, from the perspective of system collaborative management, the integrated approach of the WEC system offers superior benefits compared to individual management components. Consequently, it is imperative to bolster collaboration and institute a comprehensive set of policies to ensure sustainable development within the region.
Keywords: sustainable development; coupling coordination; water–energy–carbon; decoupling; economic growth (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3143/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3143/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3143-:d:1422267
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().