Data Augmentation with Generative Adversarial Network for Solar Panel Segmentation from Remote Sensing Images
Justinas Lekavičius () and
Valentas Gružauskas
Additional contact information
Justinas Lekavičius: Institute of Computer Science, Vilnius University, 08303 Vilnius, Lithuania
Valentas Gružauskas: Institute of Computer Science, Vilnius University, 08303 Vilnius, Lithuania
Energies, 2024, vol. 17, issue 13, 1-20
Abstract:
With the popularity of solar energy in the electricity market, demand rises for data such as precise locations of solar panels for efficient energy planning and management. However, these data are not easily accessible; information such as precise locations sometimes does not exist. Furthermore, existing datasets for training semantic segmentation models of photovoltaic (PV) installations are limited, and their annotation is time-consuming and labor-intensive. Therefore, for additional remote sensing (RS) data creation, the pix2pix generative adversarial network (GAN) is used, enriching the original resampled training data of varying ground sampling distances (GSDs) without compromising their integrity. Experiments with the DeepLabV3 model, ResNet-50 backbone, and pix2pix GAN architecture were conducted to discover the advantage of using GAN-based data augmentations for a more accurate RS imagery segmentation model. The result is a fine-tuned solar panel semantic segmentation model, trained using transfer learning and an optimal amount—60% of GAN-generated RS imagery for additional training data. The findings demonstrate the benefits of using GAN-generated images as additional training data, addressing the issue of limited datasets, and increasing IoU and F1 metrics by 2% and 1.46%, respectively, compared with classic augmentations.
Keywords: deep learning; solar panels; semantic segmentation; data augmentation; generative adversarial network; remote sensing; transfer learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3204/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3204/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3204-:d:1425479
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().