Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique
Myada Shadoul,
Rashid Al Abri,
Hassan Yousef () and
Abdullah Al Shereiqi
Additional contact information
Myada Shadoul: Sustainable Energy Research Center, Sultan Qaboos University, Muscat 123, Oman
Rashid Al Abri: College of Engineering & Architecture, University of Nizwa, Nizwa 616, Oman
Hassan Yousef: Department of Electrical and Computer Engineering, Sultan Qaboos University, Muscat 123, Oman
Abdullah Al Shereiqi: Sustainable Energy Research Center, Sultan Qaboos University, Muscat 123, Oman
Energies, 2024, vol. 17, issue 13, 1-27
Abstract:
Hybrid power plants have recently emerged as reliable and flexible electricity generation stations by combining multiple renewable energy sources, energy storage systems (ESS), and fossil-based output. However, the effective operation of the hybrid power plants to ensure continuous energy dispatch under challenging conditions is a complex task. This paper proposes a dispatch engine (DE) based on mixed-integer linear programming (MILP) for the planning and management of hybrid power plants. To maintain the committed electricity output, the dispatch engine will provide schedules for operation over extended time periods as well as monitor and reschedule the operation in real time. Through precise prediction of the load and the photovoltaic (PV) and wind power outputs, the proposed approach guarantees optimum scheduling. The precise predictions of the load, PV, and wind power levels are achieved by employing a predictor of the Feed-Forward Neural Network (FFNN) type. With such a dispatch engine, the operational costs of the hybrid power plants and the use of diesel generators (DGs) are both minimized. A case study is carried out to assess the feasibility of the proposed dispatch engine. Real-time measurement data pertaining to load and the wind and PV power outputs are obtained from different locations in the Sultanate of Oman. The real-time data are utilized to predict the future levels of power output from PV and from the wind farm over the course of 24 h. The predicted power levels are then used in combination with a PV–Wind–DG–ESS–Grid hybrid plant to evaluate the performance of the proposed dispatch engine. The proposed approach is implemented and simulated using MATLAB. The results of the simulation reveal the proposed FFNN’s powerful forecasting abilities. In addition, the results demonstrate that adopting the proposed DE can minimize the use of DG units and reduce a plant’s running expenses.
Keywords: hybrid renewable energy system (HRES); optimization; dispatch engine (DE); mixed integer linear programming (MILP); feed-forward neural networks (FFNN); forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3281/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3281/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3281-:d:1428728
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().