Research on the Effect of Fracture Angle on Neutron Logging Results of Shale Gas Reservoirs
Xueang Zhang (),
Zhichao Yang and
Xiaoyan Li
Additional contact information
Xueang Zhang: School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
Zhichao Yang: School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China
Xiaoyan Li: School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
Energies, 2024, vol. 17, issue 13, 1-18
Abstract:
Fracture structures are important natural gas transport spaces in shale gas reservoirs, and their storage state in shale gas reservoirs seriously affects gas production and extraction efficiency. This work uses numerical modeling techniques to investigate the logging response law of the thermal and epithermal neutrons in the gas-containing fracture environment at various angles, applying neutron logging as a technical method. To increase the precision of the evaluation of the natural gas storage condition in shale gas reservoirs, the angle of the fractures’ neutron logging data is analyzed. It is found that even in an environment with the same porosity of the fractures, there are significant differences in the logging results due to the different angles of the fracture alignment: 1. the neutron counts in the high-angle (70–90°) fracture environment are 2.25 times higher than in the low-angle (0–20°), but the diffusion area of the neutrons is only 10.58% of that in the low-angle (0–20°); 2. in the neutron energy spectrum, neutron counts are spreading to the high-energy region (7–13 MeV) along with the increase in the angle of the fracture, and the feature is especially prominent in the approximately vertical (60–90°) fracture environment, which is an increase of 528.12% in comparison with the counts in the approximately horizontal angle (0–30°) environment. The main reason for these differences is the variation in the volume of the fracture within the source radiation. This volumetric difference results from the variation in fracture angles (even though the fracture porosity is the same). In view of the above phenomenon, this paper proposes the concept of “effective fracture volume”, which can intuitively reflect the degree of influence of fracture angle on neutron logging results. Further, based on the unique characteristics of shale gas reservoirs and neutrons, this paper provides important theoretical support for the modification of the porosity of the field operation, the evaluation of the physical characteristics of the gas endowment space, and the assessment.
Keywords: fractures; downhole methods; numerical modelling; neutron logging; shale gas reservoirs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/13/3342/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/13/3342/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:13:p:3342-:d:1430780
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().