Variable-Length Pendulum-Based Mechatronic Systems for Energy Harvesting: A Review of Dynamic Models
Godiya Yakubu,
Paweł Olejnik () and
Ademola B. Adisa
Additional contact information
Godiya Yakubu: Department of Automation, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowski Str., 90-537 Lodz, Poland
Paweł Olejnik: Department of Automation, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowski Str., 90-537 Lodz, Poland
Ademola B. Adisa: Department of Mechanical Engineering, Faculty of Engineering and Engineering Technology, Abubakar Tafawa Balewa University, Along Dass Road, P.M.B. 0248, Bauchi 740272, Nigeria
Energies, 2024, vol. 17, issue 14, 1-36
Abstract:
The ability to power low-power devices and sensors has drawn a great deal of interest to energy harvesting from ambient vibrations. The application of variable-length pendulum systems in conjunction with piezoelectric or electromagnetic energy-harvesting devices is examined in this thorough analysis. Because of their changeable length, such pendulums may effectively convert mechanical vibrations into electrical energy. This study covers these energy-harvesting systems’ basic theories, design concerns, modeling methods, and performance optimization strategies. This article reviews several studies that look at dynamic models, the effects of damping coefficients, device designs, and excitation parameters on energy output. The advantages and disadvantages of piezoelectric and electromagnetic coupling techniques are demonstrated by comparative research. This review also looks at technical advances and future research prospects in variable-length, pendulum-based energy harvesting. An expanded model for an energy harvester based on a variable-length pendulum derived from the modified, swinging Atwood machine is more specifically presented. This model’s numerical simulations, estimated current and voltage outputs, and produced power from the electromagnetic and piezoelectric devices integrated at various points in a 4-DOF variable-length pendulum model all indicate encouraging results. This necessitates extra study, changes, and optimizations to improve the usefulness of the proposed model. Finally, important dynamic models on developing variable-length, pendulum-based energy harvesters for usage in a range of applications to create sustainable energy are summarized.
Keywords: energy harvesting; variable-length pendulum; piezoelectric devices; electromagnetic devices; mechanical vibrations; sustainable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3469/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3469/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3469-:d:1435080
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().