EconPapers    
Economics at your fingertips  
 

Multi-Site Wind Speed Prediction Based on Graph Embedding and Cyclic Graph Isomorphism Network (GIN-GRU)

Hongshun Wu and Hui Chen ()
Additional contact information
Hongshun Wu: School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
Hui Chen: School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China

Energies, 2024, vol. 17, issue 14, 1-20

Abstract: Accurate and reliable wind speed prediction is conducive to improving the power generation efficiency of electrical systems. Due to the lack of adequate consideration of spatial feature extraction, the existing wind speed prediction models have certain limitations in capturing the rich neighborhood information of multiple sites. To address the previously mentioned constraints, our study introduces a graph isomorphism-based gated recurrent unit (GIN-GRU). Initially, the model utilizes a hybrid mechanism of random forest and principal component analysis (PCA-RF) to discuss the feature data from different sites. This process not only preserves the primary features but also extracts critical information by performing dimensionality reduction on the residual features. Subsequently, the model constructs graph networks by integrating graph embedding techniques with the Mahalanobis distance metric to synthesize the correlation information among features from multiple sites. This approach effectively consolidates the interrelated feature data and captures the complex interactions across multiple sites. Ultimately, the graph isomorphism network (GIN) delves into the intrinsic relationships within the graph networks and the gated recurrent unit (GRU) integrates these relationships with temporal correlations to address the challenges of wind speed prediction effectively. The experiments conducted on wind farm datasets for offshore California in 2019 have demonstrated that the proposed model has higher prediction accuracy compared to the comparative model such as CNN-LSTM and GAT-LSTM. Specifically, by modifying the network layers, we achieved higher precision, with the mean square error (MSE) and root mean square error (RMSE) of wind speed at a height of 10 m being 0.8457 m/s and 0.9196 m/s, respectively.

Keywords: multisite wind prediction; PCA-RF; graph embedding; graph neural network; convolutional neural network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3516/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3516/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3516-:d:1437314

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3516-:d:1437314