Impact of Stationarizing Solar Inputs on Very-Short-Term Spatio-Temporal Global Horizontal Irradiance (GHI) Forecasting
Rodrigo Amaro e Silva,
Llinet Benavides Cesar (),
Miguel Ángel Manso Callejo and
Calimanut-Ionut Cira
Additional contact information
Rodrigo Amaro e Silva: Centre Observation, Impacts, Energy, MINES ParisTech, PSL Research University, 06904 Sophia Antipolis, France
Llinet Benavides Cesar: Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain
Miguel Ángel Manso Callejo: Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain
Calimanut-Ionut Cira: Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain
Energies, 2024, vol. 17, issue 14, 1-19
Abstract:
In solar forecasting, it is common practice for solar data (be it irradiance or photovoltaic power) to be converted into a stationary index (e.g., clear-sky or clearness index) before being used as inputs for solar-forecasting models. However, its actual impact is rarely quantified. Thus, this paper aims to study the impact of including this processing step in the modeling workflow within the scope of very-short-term spatio-temporal forecasting. Several forecasting models are considered, and the observed impact is shown to be model-dependent. Persistence does not benefit from this for such short timescales; however, the statistical models achieve an additional 0.5 to 2.5 percentual points (PPs) in terms of the forecasting skill. Machine-learning (ML) models achieve 0.9 to 1.9 more PPs compared to a linear regression, indicating that stationarization reveals non-linear patterns in the data. The exception is Random Forest, which underperforms in comparison with the other models. Lastly, the inclusion of solar elevation and azimuth angles as inputs is tested since these are easy to compute and can inform the model on time-dependent patterns. Only the cases where the input is not made stationary, or the underperforming Random Forest model, seem to benefit from this. This indicates that the apparent Sun position data can compensate for the lack of stationarization in the solar inputs and can help the models to differentiate the daily and seasonal variability from the shorter-term, weather-driven variability.
Keywords: clearness index; clear sky index; solar forecast; normalization; spatio-temporal (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3527/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3527/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3527-:d:1437833
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().