Review of Various Sensor Technologies in Monitoring the Condition of Power Transformers
Meysam Beheshti Asl,
Issouf Fofana () and
Fethi Meghnefi
Additional contact information
Meysam Beheshti Asl: Canada Research Chair Tier 1 in Aging of Oil-Filled Equipment on High Voltage Lines (ViAHT), Department of Applied Sciences (DSA), University of Quebec at Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada
Issouf Fofana: Canada Research Chair Tier 1 in Aging of Oil-Filled Equipment on High Voltage Lines (ViAHT), Department of Applied Sciences (DSA), University of Quebec at Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada
Fethi Meghnefi: Canada Research Chair Tier 1 in Aging of Oil-Filled Equipment on High Voltage Lines (ViAHT), Department of Applied Sciences (DSA), University of Quebec at Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada
Energies, 2024, vol. 17, issue 14, 1-40
Abstract:
Modern power grids are undergoing a significant transformation with the massive integration of renewable, decentralized, and electronically interfaced energy sources, alongside new digital and wireless communication technologies. This transition necessitates the widespread adoption of robust online diagnostic and monitoring tools. Sensors, known for their intuitive and smart capabilities, play a crucial role in efficient condition monitoring, aiding in the prediction of power outages and facilitating the digital twinning of power equipment. This review comprehensively analyzes various sensor technologies used for monitoring power transformers, focusing on the critical need for reliable and efficient fault detection. The study explores the application of fiber Bragg grating (FBG) sensors, optical fiber sensors, wireless sensing networks, chemical sensors, ultra-high-frequency (UHF) sensors, and piezoelectric sensors in detecting parameters such as partial discharges, core condition, temperature, and dissolved gases. Through an extensive literature review, the sensitivity, accuracy, and practical implementation challenges of these sensor technologies are evaluated. Significant advances in real-time monitoring capabilities and improved diagnostic precision are highlighted in the review. It also identifies key challenges such as environmental susceptibility and the long-term stability of sensors. By synthesizing the current research and methodologies, this paper provides valuable insights into the integration and optimization of sensor technologies for enhancing transformer condition monitoring and reliability in modern power systems.
Keywords: sensor technologies; power transformers; partial discharge; core condition; fiber Bragg grating; optical fiber; ultra-high-frequency sensors; dissolved gas analysis; tap-changer; bushing; oil sensors (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3533/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3533/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3533-:d:1437995
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().