Determination of Ambient Air Vaporizers’ Performance Based on a Study on Heat Transfer in Longitudinal Finned Tubes
Filip Lisowski and
Edward Lisowski ()
Additional contact information
Filip Lisowski: Department of Machine Design and Composite Structures, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland
Edward Lisowski: Department of Applied Informatics, Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland
Energies, 2024, vol. 17, issue 14, 1-20
Abstract:
Ambient air vaporizers (AVVs) are the most commonly used type of heat exchanger for cryogenic regasification stations. The transfer of heat from the environment for heating the liquefied gas and its vaporization is a cost-free and efficient method. Designing ambient air vaporizers for regasification or fueling stations requires accepting the size and related thermal power of the AVV considering the operating conditions and the type of liquefied gases to be vaporized. The nominal capacity of the ambient air vaporizer depends on its design, the frosting of longitudinal finned tubes, and the airflow through the vaporizer structure. This paper presents the results of experimental studies and computational fluid dynamics (CFD) analysis on determining the heat output of AVV longitudinal finned tubes depending on their design. This experiment was conducted in order to establish a numerical model. The relation between the longitudinal finned tubes thermal power and the air flow velocity is demonstrated and the beneficial effect of forced convection is proved. The obtained results are used for verification calculations of ambient air vaporizers’ performance depending on the size of the AVV, the profile cross-section, and the airflow velocity for different liquefied gases. Under conditions of forced convection, profiles with 12 equal-height fins were discovered to be the most efficient for higher airflow velocity providing up to 7% higher heat rate than profiles with 8 equal-height fins. However, at low air velocity, profiles with 8 equal-length fins showed a comparable heat output to profiles with 12 equal-length fins. Profiles with 8 and 12 unequal high fins differ in average heat output by about 28%. The profile with 12 unequal high fins turned out to be the least effective when 2D airflow was considered in this analysis.
Keywords: ambient air vaporizers; longitudinal finned tubes; forced convection; CFD analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3579/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3579/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3579-:d:1439629
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().