EconPapers    
Economics at your fingertips  
 

Energy Management of Green Port Multi-Energy Microgrid Based on Fuzzy Logic Control

Yu Deng () and Jingang Han
Additional contact information
Yu Deng: Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China
Jingang Han: Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China

Energies, 2024, vol. 17, issue 14, 1-26

Abstract: The green port multi-energy microgrid, featuring renewable energy generation, hydrogen energy, and energy storage systems, is an important gateway to achieve the net-zero emission goal. But there are many forms of energy in green port multi-energy microgrid systems, the power fluctuates frequently, and the port loads with large fluctuations and fast changes. These factors can easily lead to the problem of the state of charge exceeding the limit of the energy storage system. To distribute the fluctuating power in the green port multi-energy microgrid system reasonably and maintain the state of charge (SOC) of the hybrid energy storage system in an moderate range, an energy management strategy (EMS) based on dual-stage fuzzy control with a low pass-filter algorithm is proposed in this paper. First, the mathematical model of a green port multi-energy microgrid system is established. Then, fuzzy rules are designed, and the dual-stage fuzzy controller is used to change the time constant of the low-pass filter (LPF) and modify the initial power distribution by an LPF algorithm. Finally, simulation models are built in Matlab 2016a/Simulink. The simulation results demonstrate that, compared with other algorithms under the control of the EMS proposed in this paper, the high-frequency component in the flywheel power is smaller, and the SOC of the supercapacitor is maintained in a reasonable range of 34–78%, which extends the lifespan of the flywheel and supercapacitor. Additionally, it has a faster automatic adjustment ability for the state of charge of the energy storage system, which is conducive to better maintaining the stable operation of green port multi-energy microgrid systems.

Keywords: green port; multi-energy microgrid system; energy management strategy; fuzzy control; power distribution; hybrid energy storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3601/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3601/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3601-:d:1440357

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3601-:d:1440357