Computational Fluid Dynamics Simulation on Blade Geometry of Novel Axial FlowTurbine for Wave Energy Extraction
Mohammad Nasim Uddin (),
Yang Gao and
Paul M. Akangah
Additional contact information
Mohammad Nasim Uddin: Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
Yang Gao: Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
Paul M. Akangah: Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
Energies, 2024, vol. 17, issue 14, 1-28
Abstract:
Wave energy converters (WECs) utilizing the Oscillating Water Column (OWC) principle have gained prominence for harnessing kinetic energy from ocean waves. This study explores an innovative approach by transforming the pivoting Denniss–Auld turbine blades into a fixed configuration, offering a simplified alternative. The fixed-blade design emulates the maximum pivot points during the OWC’s exhalation and inhalation phases. Traditional Denniss–Auld turbines rely on complex hub systems to enable controllable blade rotation for performance optimization. This research examines the turbine’s efficiency without mechanical actuation. The simulations were conducted using ANSYS™ CFX 2023 R2 to solve the three-dimensional, incompressible, steady-state Reynolds-Averaged Navier–Stokes (RANS) equations, employing the k-ω SST turbulence model to close the system of equations. A grid convergence study was performed, and the numerical results were validated against available experimental and numerical data. An in-depth analysis of the intricate flow field around the turbine blades was also conducted. The modified Denniss–Auld turbine demonstrated a broad operating range, avoiding stalling at high flow coefficients and exhibiting performance characteristics like an impulse turbine. However, the peak efficiency was 12%, significantly lower than that of conventional Denniss–Auld and impulse turbines. Future research should focus on expanding the design space through parametric studies to enhance turbine efficiency and power output.
Keywords: wave energy; Wells turbine; modified Dennis–Auld turbine; grid independence (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/14/3602/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/14/3602/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:14:p:3602-:d:1440398
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().