Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms
Kun Yu ()
Additional contact information
Kun Yu: College of Electrical Engineering New Energy, China Three Gorges University, Yichang 443002, China
Energies, 2024, vol. 17, issue 15, 1-13
Abstract:
Special load customers such as electric vehicles are emerging in modern power systems. They lead to a higher penetration of special load patterns, raising difficulty for short-term load forecasting (STLF). We propose a hierarchical STLF framework to improve load forecasting accuracy. An improved adaptive K-means clustering algorithm is designed for load pattern recognition and avoiding local sub-optimal clustering centroids. We also design bi-directional long-short-term memory neural networks with an attention mechanism to filter important load information and perform load forecasting for each recognized load pattern. The numerical results on the public load dataset show that our proposed method effectively forecasts the residential load with a high accuracy.
Keywords: load forecast; clustering; bi-directional LSTM; attention mechanism; pattern recognition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/15/3709/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/15/3709/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:15:p:3709-:d:1444114
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().