Optimizing the Size of a Moving Annular Hollow Laser Heat Source
Yongqi Ding and
Xiaohui Zhang ()
Additional contact information
Yongqi Ding: College of Energy, Soochow University, Suzhou 215006, China
Xiaohui Zhang: College of Energy, Soochow University, Suzhou 215006, China
Energies, 2024, vol. 17, issue 15, 1-14
Abstract:
The physical phenomenon of the annular hollow laser surface treatment process is complex, and the internal mechanism involves multiple disciplines and fields. In addition to the general parameters of laser beams, such as laser power and scanning speed, an annular hollow laser beam exhibits unique physical characteristics, including hollow ratio and hollow area. The selection of the inner and outer annular radii of the laser plays a critical role in the study of metal surface heat treatment. From the point of view of heat transfer, the entransy dissipation theory is introduced in the metal surface treatment process with an annular hollow heat source. Firstly, using the principle of the extreme value of the entransy dissipation rate, under a constant heat flux boundary condition, the entransy dissipation rate is obtained through the temperature field distribution in the calculation area by numerical simulation. Secondly, the selection of the inner and outer ring radii of the annular laser is explored, and the average temperature difference of the heating surface is minimized to reduce the thermal stresses of the material. This paper seeks new insights into the geometric parameters of the inner and outer radii of the annular heat source.
Keywords: laser surface treatment; annular hollow laser; entransy dissipation rate; uniform temperature field (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/15/3750/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/15/3750/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:15:p:3750-:d:1445656
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().