Thermal Performance Improvement of Cross-Flow Double-Layered Microchannel Heat Sinks through Proper Header Design
Stefano Savino () and
Carlo Nonino
Additional contact information
Stefano Savino: Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, 33100 Udine, Italy
Carlo Nonino: Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, 33100 Udine, Italy
Energies, 2024, vol. 17, issue 15, 1-25
Abstract:
Over the past two decades, double-layered microchannel heat sinks (DL-MCHs) have become increasingly popular as they provide effective performance for electronic cooling, particularly in the counterflow configuration. The cross-flow configuration, which requires much simpler headers, has seldom been considered in the scientific literature, probably due to the possible formation of a hotspot near the outlet port. The aim of this study is to show that cross-flow DL-MCHs can provide performance levels that are comparable to those attained by counterflow DL-MCHs by exploiting the nonuniform flow distribution produced by properly designed headers. Numerical simulations are performed using in-house finite element procedures to solve the parabolized Navier–Stokes equations in the microchannels and the energy equation in the entire computational domain. The analysis is carried out both for ideal linear microchannel velocity distributions and for the realistic velocity distributions induced by headers with or without baffles, as proposed by the authors in previous papers. The optimal degree of velocity nonuniformity in the microchannels yielding the best thermal performance was found to depend on the flow rate. For instance, in the case of optimal linear variations of the microchannel velocity distribution, the thermal resistance was reduced by 11.8%, 7.1%, and 4.4% compared to the case with uniform inlet velocities, and it was only 3.4%, 1.8%, and 0.3% higher than that of the counterflow configuration for average microchannel velocities equal to 0.5, 1, and 2 m/s, respectively. The main conclusion is that the cross-flow configuration, with its simple headers and piping, can achieve thermal resistance and temperature uniformity on the heated surface that are very similar to that of the counter-flow configuration through proper header design that ensures a suitable microchannel velocity distribution.
Keywords: microchannel heat sinks; double-layer; cross-flow; header geometry; maldistribution; hotspot (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/15/3790/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/15/3790/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:15:p:3790-:d:1447942
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().