Advancement of Bioenergy Technology in South Africa
KeChrist Obileke (),
Patrick Mukumba and
Mahali Elizabeth Lesala
Additional contact information
KeChrist Obileke: RNA—Renewable Energy (Wind), Department of Physics, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
Patrick Mukumba: RNA—Renewable Energy (Wind), Department of Physics, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
Mahali Elizabeth Lesala: RNA—Renewable Energy (Wind), Department of Physics, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
Energies, 2024, vol. 17, issue 15, 1-19
Abstract:
South Africa has been experiencing an energy crisis since 2007 and continues to the present. This has resulted in load-shedding (action to interrupt electricity supply to avoid excessive load on the generating plant). One way to address this problem is to further explore the potential and contribution of bioenergy through research conducted and implementing energy reports. Therefore, the study aims to provide the state of bioenergy and its contribution to the country’s economic sector and to enhance the replacement of fossil fuels with bioenergy resources and technology. A total blackout of 15,913 h has been experienced since 2014, according to the weekly system status report released by ESKOM. The power utility (Eskom) responsible for power generation and utility has attributed this problem to insufficient generation and capacity. Based on this, the country is embarking on solving this problem. Although the country is dominated by coal (fossil fuel), constituting 73.8% of the total energy supply, this poses a serious environmental risk and health hazard. Renewable energy is considered an alternative energy source, and its introduction and implementation look promising in reducing and solving the current energy crisis. With abundant renewable energy potential, representing 8.7% of the total energy supply, around 85% is bioenergy. This review’s findings revealed that bioenergy contributed mainly towards heat, and fuels admit other energy sources, which is recommended. Therefore, its deployment on a large scale is promising and possible. This study will guide and further encourage the deployment of bioenergy projects in South Africa.
Keywords: biomass; energy crisis; load-shedding; renewable energy; solid waste (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/15/3823/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/15/3823/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:15:p:3823-:d:1448920
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().