EconPapers    
Economics at your fingertips  
 

Turbulent Boundary Layer Control with Multi-Scale Riblet Design

Md. Rafsan Zani, Nir Saar Maor, Dhanush Bhamitipadi Suresh and Yaqing Jin ()
Additional contact information
Md. Rafsan Zani: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
Nir Saar Maor: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
Dhanush Bhamitipadi Suresh: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
Yaqing Jin: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

Energies, 2024, vol. 17, issue 15, 1-15

Abstract: Motivated by the saturation of drag reduction effectiveness at high non-dimensional riblet spacing in turbulent boundary layer flows, this study seeks to investigate the influence of a secondary blade riblet structure on flow statistics and friction drag reduction effectiveness in comparison to the widely explored single-scale blade riblet surface. The turbulent flow dynamics and drag reduction performance over single- and multi-scale blade riblet surfaces were experimentally examined in a flow visualization channel across various non-dimensional riblet spacings. The shear velocity was quantified by the streamwise velocity distributions from the logarithmic layer via planar Particle Image Velocimetry (PIV) measurements, whereas the near-wall flow dynamics were characterized by a Micro Particle Image Velocimetry (micro-PIV) system. The results highlighted that although both riblet surfaces exhibited similar drag reduction performances at low non-dimensional riblet spacings, the presence of a secondary riblet blade structure can effectively extend the drag reduction region with the non-dimensional riblet spacing up to 32 and achieve approximately 10% lower friction drag in comparison to the single-scale riblet surface when the non-dimensional riblet spacing increases to 44.2. The average number of uniform momentum zones (UMZs) on the multi-scaled blade riblet has also reduced by 9% compared to the single-scaled riblet which indicates the reduction of strong shear layers within a turbulent boundary layer. The inspection of near-wall flow statistics demonstrated that at high non-dimensional riblet spacings, the multi-scale riblet surface produces reduced wall-normal velocity fluctuations and Reynolds shear stresses. Quadrant analysis revealed that this design allows for the suppression of both the sweep and ejection events. This experimental result demonstrated that surfaces with spanwise variations of riblet heights have the potential to maintain drag reduction effectiveness across a wider range of flow speeds.

Keywords: turbulent boundary layer flow; multi-scale riblet; flow control; drag reduction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/15/3827/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/15/3827/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:15:p:3827-:d:1448996

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3827-:d:1448996