Review of Fourth-Order Predictive Modeling and Illustrative Application to a Nuclear Reactor Benchmark. I. Typical High-Order Sensitivity and Uncertainty Analysis
Dan Gabriel Cacuci () and
Ruixian Fang
Additional contact information
Dan Gabriel Cacuci: Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Ruixian Fang: Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Energies, 2024, vol. 17, issue 16, 1-19
Abstract:
This work (in two parts) will review the recently developed predictive modeling methodology called “4th-BERRU-PM” and its applicability to nuclear energy systems as exemplified by an illustrative application to the Polyethylene-Reflected Plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. The acronym 4th-BERRU-PM designates the “Fourth-Order Best-Estimate Results with Reduced Uncertainties Predictive Modeling” methodology, which uses the Maximum Entropy (MaxEnt) principle to incorporate fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters, while yielding best-estimate results with reduced uncertainties for the first fourth-order moments (mean values, covariance, skewness, and kurtosis) of the optimally predicted posterior distribution of model results and calibrated model parameters. The 4th-BERRU-PM methodology encompasses the scopes of high-order sensitivity analysis (SA), uncertainty quantification (UQ), data assimilation (DA) and model calibration (MC), as will be illustrated in this work by means of the above-mentioned OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation involving 21,976 imprecisely known parameters, the solution of which is representative of “large-scale computations”. The model result (“response”) of interest is the leakage of neutrons through the outer surface of this spherical benchmark, which can be computed numerically and measured experimentally. Part 1 of this work illustrates the impact of high-order sensitivities, in conjunction with parameter standard deviations of various magnitudes, on the determination of the expected value and variance of the computed response in terms of the first four moments of the distribution of the uncertain model parameters. Part 2 of this work will illustrate the capabilities of the 4th-BERRU-PM methodology for combining computational and experimental information, up to and including forth-order sensitivities and distributional moments, for producing best-estimate values for the predicted responses and model parameters while reducing their accompanying uncertainties.
Keywords: predictive modeling; sensitivity analysis; uncertainty quantification; data assimilation; model calibration; reducing predicted uncertainties; nuclear energy systems; reactor physics benchmark; neutron transport (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/3874/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/3874/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:3874-:d:1450916
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().