EconPapers    
Economics at your fingertips  
 

Source-Storage-Load Flexible Scheduling Strategy Considering Characteristics Complementary of Hydrogen Storage System and Flexible Carbon Capture System

Lang Zhao (), Zhidong Wang, Haiqiong Yi, Yizheng Li, Xueying Wang, Yunpeng Xiao, Zhiyun Hu, Honglian Zhou and Xinhua Zhang
Additional contact information
Lang Zhao: State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
Zhidong Wang: State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
Haiqiong Yi: State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
Yizheng Li: State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
Xueying Wang: State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
Yunpeng Xiao: Department of Electric Power Engineering, Xi’an Jiaotong University, Xi’an 710061, China
Zhiyun Hu: Economic and Technological Research Institute, State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830063, China
Honglian Zhou: Economic and Technological Research Institute, State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830063, China
Xinhua Zhang: State Grid Shandong Electric Power Co., Ltd., Jinan 250013, China

Energies, 2024, vol. 17, issue 16, 1-28

Abstract: In the current literature, there exists a lack of analysis regarding the coordination of the spinning reserve and time-shift characteristics of hydrogen storage systems (HSS) and flexible carbon capture systems (FCCS) in terms of low-carbon economic operation. They are presently used solely as a tool to capture carbon dioxide, without fully utilizing the advantages of their flexible operation. The coordination and complementarity of the FCCS and HSS can ensure stable power supply and improve renewable energy (RE) consumption. Combined with demand side response (DSR), these factors can maximize the RE consumption capacity, reduce carbon emissions, and improve revenue. In this paper, a source-storage-load flexible scheduling strategy is proposed by considering the complementary nature of FCCS and HSS in terms of rotating standby and time-shift characteristics. First, the operational mechanisms of FCCS, HSS, and demand side response (DSR) are analyzed, and their mathematical models are constructed to improve flexibility in grid operation and regulation. Next, deficiencies in FCCS and HSS operation under rotating reserve requirements are analyzed to design a coordinated operation framework for the FCCS and HSS. This operational framework aims to enable the complementarity of the rotating reserve and time-shift characteristics of FCCS and HSS. Finally, based on the carbon emission trading mechanism, a three-stage ladder carbon emission trading cost model is constructed, and a source-storage-load flexible scheduling strategy is established to achieve an effective balance between low carbon emissions and economic performance. The simulation results demonstrate that the strategy reduces the overall cost by 8.57%, reduces the carbon emissions by 35.33%, and improves the renewable energy consumption by 3.5% compared with the unoptimized scheme.

Keywords: hydrogen storage system; flexible scheduling strategy; flexible carbon capture system; rotating standby; time-shift characteristics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/3894/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/3894/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:3894-:d:1451449

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3894-:d:1451449