EconPapers    
Economics at your fingertips  
 

Leveraging Gaussian Processes in Remote Sensing

Emma Foley ()
Additional contact information
Emma Foley: Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA

Energies, 2024, vol. 17, issue 16, 1-20

Abstract: Power grid reliability is crucial to supporting critical infrastructure, but monitoring and maintenance activities are expensive and sometimes dangerous. Monitoring the power grid involves diverse sources of data, including those inherent to the power operation (inertia, damping, etc.) and ambient atmospheric weather data. TheAutonomous Intelligence Measurements and Sensor Systems (AIMS) project at the Oak Ridge National Laboratory is a project to develop a machine-controlled response team capable of autonomous inspection and reporting with the explicit goal of improved grid reliability. Gaussian processes (GPs) are a well-established Bayesian method for analyzing data. GPs have been successful in satellite sensing for physical parameter estimation, and the use of drones for remote sensing is becoming increasingly common. However, the computational complexity of GPs limits their scalability. This is a challenge when dealing with remote sensing datasets, where acquiring large amounts of data is common. Alternatively, traditional machine learning methods perform quickly and accurately but lack the generalizability innate to GPs. The main objective of this review is to gather burgeoning research that leverages Gaussian processes and machine learning in remote sensing applications to assess the current state of the art. The contributions of these works show that GP methods achieve superior model performance in satellite and drone applications. However, more research using drone technology is necessary. Furthermore, there is not a clear consensus on which methods are the best for reducing computational complexity. This review paves several routes for further research as part of the AIMS project.

Keywords: remote sensing; grid management; literature review (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/3895/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/3895/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:3895-:d:1451456

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3895-:d:1451456