EconPapers    
Economics at your fingertips  
 

Simulation and Energy Analysis of Integrated Solar Combined Cycle Systems (ISCCS) Using Aspen Plus

Najah M. Al Mhanna (), Islam Al Hadidi and Sultan Al Maskari
Additional contact information
Najah M. Al Mhanna: Engineering Department, German University of Technology in Oman, Muscat 1816, Oman
Islam Al Hadidi: Engineering Department, German University of Technology in Oman, Muscat 1816, Oman
Sultan Al Maskari: Chair of Public Law, with Focus on Environmental and Planning Law, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany

Energies, 2024, vol. 17, issue 16, 1-14

Abstract: The aim of this research is to simulate and analyze a combined power cycle (Steam turbine and gas turbine cycles) by studying the effect of changing the natural gas flow rate on the developed power. Therefore, reducing the amount of used natural gas in the combustion chamber of the gas turbine cycle from 9.2 to 4 kg/s showed a significant drop in the power produced by the gas turbine, i.e., from 123.7 to 57.7 MW. Additionally, this change in the combusted natural gas amount affected the heat recovered in both heat recovery steam generators (HRSGs), i.e., from 219.79 to 100.35 MW, respectively. Consequently, the amount of generated steam in the high pressure HRSGs and the power developed in the steam turbine changed from 60.88 to 27.79 kg/s and from 56.39 to 27.13 MW, respectively. A heat exchanger (HFHX) utilizing a heating fluid was used as an external source of energy to compensate the reduction in the generated heat and to increase the amount of generated steam up to 157.32 kg/s, which keeps the power plant capacity at 180 MW. Existing combined local plant data were used in this study and were simulated in Aspen Plus software V11. A sensitivity analysis was made to optimize the cycle operating conditions that use less natural gas and produce the same amount of power.

Keywords: integrated solar combined cycle; Aspen Plus; sensitivity analysis; simulation; thermodynamics; thermal energy; power plant; concentrated solar power (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/3986/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/3986/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:3986-:d:1454642

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3986-:d:1454642