Evaluation of Exterior Insulated Panels for Residential Deep Energy Retrofits
Kyle Biega and
Moncef Krarti ()
Additional contact information
Kyle Biega: Building Systems Program, University of Colorado Boulder, Boulder, CO 80309, USA
Moncef Krarti: Building Systems Program, University of Colorado Boulder, Boulder, CO 80309, USA
Energies, 2024, vol. 17, issue 16, 1-30
Abstract:
This paper provides an analysis of challenges and available solutions for exterior insulated panels suitable for deep energy retrofits of existing building envelopes. The analysis covers a review of available technologies that provide flexible retrofit insulated panels suitable for multiple climates and building typologies. Moreover, the paper proposes a new design for insulated retrofit panels that account for the majority of identified technical risks including cost, architectural diversity, climate variations, structural concerns, moisture resilience, air sealing, and water sealing. Additionally, the proposed design can be easily installed with minimal disruption to the occupants. A series of parametric and optimization analyses is carried out to identify the optimal design specifications for insulated panels suitable for deep retrofits of existing US housing stocks. The analysis results show that the optimal design criteria for the insulated panels can reduce heating and cooling energy consumption by up to 80% and HVAC capacities by 70%. Moreover, the results indicate that these insulated panels are highly cost effective for retrofitting US housing units located in cold climates.
Keywords: building envelope; energy savings; housing prototypes; insulated panels; cost optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/3988/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/3988/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:3988-:d:1454647
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().