A Hydrogen-Integrated Aggregator Model for Managing the Point of Common Coupling Congestion in Green Multi-Microgrids
Farshad Khavari and
Jay Liu ()
Additional contact information
Farshad Khavari: Institute of Cleaner Production Technology, Pukyong National University, Busan 48547, Republic of Korea
Jay Liu: Institute of Cleaner Production Technology, Pukyong National University, Busan 48547, Republic of Korea
Energies, 2024, vol. 17, issue 16, 1-20
Abstract:
The rapid expansion of energy storage integration has not provided sufficient time to strengthen and expand the transmission and distribution network. This issue can lead to PCC congestion in green multi-microgrid (MMG) systems. In these systems, microgrids operate independently and connect to the grid at a point of common coupling (PCC) without sharing operational data with neighboring microgrids. To address this issue, this paper proposes a bi-level optimization model designed to reschedule hydrogen storage systems. The first level allows each microgrid to optimize its energy transactions with the grid and communicates any unbalanced energy to the second level, where a hydrogen management system (HMS) is introduced. The HMS optimizes virtual hydrogen prices to address the PCC congestion and maximize the MMG’s profit. These virtual prices are then sent to the first level, allowing the microgrids to reschedule the hydrogen storage systems based on these virtual prices. Finally, the MMG’s profit is fairly allocated among the microgrids using the Shapley value method. The proposed method’s effectiveness is demonstrated using simulations, which show a six percent increase in MMG profit compared to scenarios that only share PCC capacity while maintaining the data privacy of all the involved microgrids.
Keywords: energy management system; hydrogen storage system; congestion; aggregator; multi-microgrids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/4018/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/4018/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:4018-:d:1455641
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().