Predicting Energy Production in Renewable Energy Power Plants Using Deep Learning
Abdil Karakan ()
Additional contact information
Abdil Karakan: Electrical Department, Dazkırı Vocational School, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey
Energies, 2024, vol. 17, issue 16, 1-13
Abstract:
It is very important to analyze and forecast energy production for investments in renewable energy resources. In this study, the energy production of wind and solar power plants, which are among the leading renewable energy sources, was estimated using deep learning. For a solar power plant, three different solar power plants with 1MW installed power were examined. Three-year energy production data of power plants were taken. These data were used with the deep learning method long short-term memory (LSTM) and seasonal autoregressive moving average (SARIMA). Results were obtained for each dataset; they were subjected to five different (MSE, RMSE, NMSE, MAE, and MAPE) error performance measurement systems. In the LSTM model, the highest accuracy rate was 81% and the lowest accuracy rate was 59%. In the SARIMA model, the highest accuracy rate was 66% and the lowest accuracy rate was 41%. As for wind energy, wind speeds in two different places were estimated. Wind speed data were taken from meteorological stations. Datasets were tested with MAPE, R 2 , and RMSE error performance measurement systems. LSTM, GRU, CNN-LSTM, CNN-RNN, LSTM-GRU, and CNN-GRU deep learning methods were used in this study. The CNN-GRU model achieved a maximum accuracy of 99.81% in wind energy forecasting.
Keywords: solar energy forecast; deep learning; wind speed forecast; renewable energy sources; LSTM; SARIMA (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/4031/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/4031/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:4031-:d:1456154
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().