EconPapers    
Economics at your fingertips  
 

Metaheuristic Optimization of the Agricultural Biomass Supply Chain: Integrating Strategic, Tactical, and Operational Planning

Seyed Mojib Zahraee (), Nirajan Shiwakoti and Peter Stasinopoulos
Additional contact information
Seyed Mojib Zahraee: Department of Manufacturing, Materials and Mechatronics, School of Engineering, RMIT University, Melbourne, VIC 3053, Australia
Nirajan Shiwakoti: Department of Manufacturing, Materials and Mechatronics, School of Engineering, RMIT University, Melbourne, VIC 3053, Australia
Peter Stasinopoulos: Department of Manufacturing, Materials and Mechatronics, School of Engineering, RMIT University, Melbourne, VIC 3053, Australia

Energies, 2024, vol. 17, issue 16, 1-35

Abstract: Biomass supply chain (BSC) activities have caused social and environmental disruptions, such as climate change, energy security issues, high energy demand, and job opportunities, especially in rural areas. Moreover, different economic problems have arisen globally in recent years (e.g., the high costs of BSC logistics and the inefficiency of generating bioenergy from low-energy-density biomass). As a result, numerous researchers in this field have focused on modeling and optimizing sustainable BSC. To this end, this study aims to develop a multi-objective mathematical model by addressing three sustainability pillars (economic cost, environmental emission, and job creation) and three decision levels (i.e., strategic (location of facilities), tactical (type of transportation and routing), and operational (vehicle planning). A palm oil BSC case study was selected in the context of Malaysia in which two advanced evolutionary algorithms, i.e., non-dominated sorting genetic algorithm II (NSGA-II) and Multiple Objective Particle Swarm Optimization (MOPSO), were implemented. The study results showed that the highest amounts of profit obtained from the proposed supply chain (SC) design were equal to $13,500 million and $7000 million for two selected examples with maximum emissions. A better target value was achieved in the extended example when 40% profit was reduced, and the minimum emissions from production and transportation in the BSC were attained. In addition, the results demonstrate that more Pareto solutions can be obtained using the NSGA-II algorithm. Finally, the technique for order of preference by similarity to the ideal solution (TOPSIS) was adopted to balance the optimum design points obtained from the optimization algorithm solutions through two-objective problems. The results indicated that MOPSO worked more efficiently than NSGA-II, although the NSGA-II algorithm succeeded in generating more Pareto solutions.

Keywords: bioenergy; biomass supply chain; optimization; sustainability; meta-heuristic; emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/4040/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/4040/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:4040-:d:1456459

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4040-:d:1456459