Modeling Snap-Off during Gas–Liquid Flow by Using Lattice Boltzmann Method
Ke Zhang,
Yuan Ji,
Tao Zhang and
Tianyi Zhao ()
Additional contact information
Ke Zhang: State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development, Beijing 102206, China
Yuan Ji: National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
Tao Zhang: Shaanxi Yanchang Petroleum (Group) Co., Ltd., Yan’an 716000, China
Tianyi Zhao: State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development, Beijing 102206, China
Energies, 2024, vol. 17, issue 16, 1-20
Abstract:
Understanding the mechanisms of snap-off during gas–liquid immiscible displacement is of great significance in the petroleum industry to enhance oil and gas recovery. In this work, based on the original pseudo-potential lattice Boltzmann method, we improved the fluid–fluid force and fluid–solid force scheme. Additionally, we integrated the Redlich–Kwong equation of state into the lattice Boltzmann model and employed the exact difference method to incorporate external forces within the lattice Boltzmann framework. Based on this model, a pore–throat–pore system was built, enabling gas–liquid to flow through it to investigate the snap-off phenomenon. The results showed the following: (1) The snap-off phenomenon is related to three key factors: the displacement pressure, the pore–throat length ratio, and the pore–throat width ratio. (2) The snap-off phenomenon occurs only when the displacement pressure is within a certain range. When the displacement pressure is larger than the upper limit, the snap-off will be inhibited, and when the pressure is less than the lower limit, the gas–liquid interface cannot overcome the pore–throat and results in a “pinning” effect. (3) The snap-off phenomenon is controlled using the pore–throat structures: e.g., length ratio and the width ratio between pore and throat. It is found that the snap-off phenomenon could easily occur in a “long-narrow” pore–throat system, and yet hardly in a “short-wide” pore–throat system.
Keywords: snap-off; gas–liquid interface; two-phase flow; lattice Boltzmann method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/16/4062/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/16/4062/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:16:p:4062-:d:1457375
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().