EconPapers    
Economics at your fingertips  
 

Microplastics in Sewage Sludge: Worldwide Presence in Biosolids, Environmental Impact, Identification Methods and Possible Routes of Degradation, Including the Hydrothermal Carbonization Process

Zuzanna Prus and Małgorzata Wilk ()
Additional contact information
Zuzanna Prus: Department of Heat Engineering and Environment Protection, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland
Małgorzata Wilk: Department of Heat Engineering and Environment Protection, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland

Energies, 2024, vol. 17, issue 17, 1-26

Abstract: Biomass-to-biofuel conversion represents a critical component of the global transition to renewable energy. One of the most accessible types of biomass is sewage sludge (SS). This by-product from wastewater treatment plants (WWTPs) contains microplastics (MPs) originating from household, industrial and urban runoff sources. Due to their small size (<5 mm) and persistence, MPs present a challenge when they are removed from sewage systems, where they mainly accumulate (~90%). The presence of MPs in SS poses environmental risks when biosolids are applied as fertilizer in agriculture or incinerated for the purpose of energy production. The key problem is the efficient and reliable identification and reduction of MPs in sewage systems, due to the lack of standardized procedures. The reduction methods for MPs might involve physical, chemical, biological, and hydrothermal approaches, including hydrothermal carbonization (HTC). The HTC of SS produces hydrochar (HC), a solid biofuel, and presents a cutting-edge approach that simultaneously addresses secondary microplastic pollution and renewable biomass-derived energy production. In this article, we review briefly the MPs content in biosolids from different countries, and present HTC as a promising method for their removal from SS. In conclusion, HTC (i) effectively reduces the abundance of MPs in biosolids, (ii) produces an improved solid source of energy, and (iii) contributes to circular SS management.

Keywords: microplastic; sewage sludge; biomass; hydrothermal carbonization; thermal degradation; wastewater treatment; biosolids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/17/4219/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/17/4219/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:17:p:4219-:d:1462809

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4219-:d:1462809