SVC Control Strategy for Transient Stability Improvement of Multimachine Power System
Anica Šešok () and
Ivica Pavić
Additional contact information
Anica Šešok: Department of Energy and Power Systems, University of Zagreb Faculty of Electrical Engineering and Computing, 10000 Zagreb, Croatia
Ivica Pavić: Department of Energy and Power Systems, University of Zagreb Faculty of Electrical Engineering and Computing, 10000 Zagreb, Croatia
Energies, 2024, vol. 17, issue 17, 1-15
Abstract:
The increase in renewable energy sources (RESs) in power systems is causing significant changes in their dynamic behavior. To ensure the safe operation of these systems, it is necessary to develop new methods for preserving transient stability that follow the new system dynamics. Fast-response devices such as flexible AC transmission systems (FACTSs) can improve the dynamic response of power systems. One of the most frequently used FACTS devices is the Static Var Compensator (SVC), which can improve a system’s transient stability with a proper control strategy. This paper presents a reactive power control strategy for an SVC using synchronized voltage phasor measurements and particle swarm optimization (PSO) to improve the transient stability of a multimachine power system. The PSO algorithm is based on the sensitivity analysis of bus voltage amplitudes and angles to the reactive power of the SVC. It determines the SVC reactive power required for damping active power oscillations of synchronous generators in fault conditions. The sensitivity coefficients can be determined in advance for the characteristic switching conditions of the influential part of the transmission network, and with the application of the PSO algorithm, enable quick and efficient finding of a satisfactory solution. This relatively simple and fast algorithm can be applied in real time. The proposed control strategy is tested on the IEEE 14-bus system using DIgSILENT PowerFactory. The simulation results show that an SVC with the proposed control strategy effectively minimizes the rotor angle oscillations of generators after large disturbances.
Keywords: voltage phasor measurement; power oscillations damping; reactive power control; rotor angle; SVC; transient stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/17/4224/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/17/4224/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:17:p:4224-:d:1462923
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().