EconPapers    
Economics at your fingertips  
 

Dual Active Bridge Converter with Interleaved and Parallel Operation for Electric Vehicle Charging

Burak Muhammetoglu and Mohsin Jamil ()
Additional contact information
Burak Muhammetoglu: Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
Mohsin Jamil: Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada

Energies, 2024, vol. 17, issue 17, 1-32

Abstract: This paper presents the design and optimization of a bidirectional Dual Active Bridge (DAB) converter for electric vehicle battery charging applications, encompassing both heavy and light electric vehicles. The core of this study is a 5.6 kW DAB converter that can seamlessly transition between 3.7 kW and 11.2 kW power outputs to accommodate different vehicle requirements without the need for circuit component changes. This flexibility is achieved through the novel integration of interleaved and parallel operation capabilities, allowing for efficient operation across a broad power range. Key innovations include the design of a high-frequency transformer with dual secondary outputs to facilitate power transfer at high currents up to 30 A, an optimized thermal design, and minimized stress on the circuit board. The use of next-generation power semiconductors and low-loss magnetic circuit elements has resulted in an optimized single-stage bidirectional converter design that showcases enhanced efficiency and competitiveness in the field. Furthermore, the converter’s design enables easy reconfiguration to meet the desired power output, vehicle type, and application needs, making it adaptable for future applications such as Vehicle-to-Grid (V2G) systems. The combination of these features—versatility in power output, efficient high-current transfer, innovative use of power semiconductors, and adaptability for future technologies—positions this DAB converter as a significant advancement in electric vehicle charging technology, offering a scalable solution to meet the evolving demands of electric mobility and renewable energy integration.

Keywords: electric vehicle (EV); bidirectional power converter; vehicle to grid (V2G); dual active bridge (DAB); dual output converter; silicon carbide (SiC) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/17/4258/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/17/4258/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:17:p:4258-:d:1464107

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4258-:d:1464107