Multi-Timeframe Forecasting Using Deep Learning Models for Solar Energy Efficiency in Smart Agriculture
Saravanakumar Venkatesan () and
Yongyun Cho
Additional contact information
Saravanakumar Venkatesan: Department of Information and Communications Engineering, Sunchon National University, Suncheon-si 57922, Republic of Korea
Yongyun Cho: Department of Information and Communications Engineering, Sunchon National University, Suncheon-si 57922, Republic of Korea
Energies, 2024, vol. 17, issue 17, 1-29
Abstract:
Since the advent of smart agriculture, technological advancements in solar energy have significantly improved farming practices, resulting in a substantial revival of different crop yields. However, the smart agriculture industry is currently facing challenges posed by climate change. This involves multi-timeframe forecasts for greenhouse operators covering short-, medium-, and long-term intervals. Solar energy not only reduces our reliance on non-renewable electricity but also plays a pivotal role in addressing climate change by lowering carbon emissions. This study aims to find a method to support consistently optimal solar energy use regardless of changes in greenhouse conditions by predicting solar energy (kWh) usage on various time steps. In this paper, we conducted solar energy usage prediction experiments on time steps using traditional Tensorflow Keras models (TF Keras), including a linear model (LM), Convolutional Neural Network (CNN), stacked—Long Short Term Memory (LSTM), stacked-Gated recurrent unit (GRU), and stacked-Bidirectional—Long Short —Term Memory (Bi-LSTM), as well as Tensor-Flow-based models for solar energy usage data from a smart farm. The stacked-Bi-LSTM outperformed the other DL models with Root Mean Squared Error (RMSE) of 0.0048, a Mean Absolute Error (MAE) of 0.0431, and R-Squared ( R 2 ) of 0.9243 in short-term prediction (2-h intervals). For mid-term (2-day) and long-term (2-week) forecasting, the stacked Bi-LSTM model also exhibited superior performance compared to other deep learning models, with RMSE values of 0.0257 and 0.0382, MAE values of 0.1103 and 0.1490, and R 2 values of 0.5980 and 0.3974, respectively. The integration of multi-timeframe forecasting is expected to avoid conventional solar energy use forecasting, reduce the complexity of greenhouse energy management, and increase energy use efficiency compared to single-timeframe forecasting models.
Keywords: greenhouse solar energy; short-mid and long-term forecasting; time series; deep learning models (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/17/4322/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/17/4322/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:17:p:4322-:d:1466745
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().