Experimental Assessment of a Novel Irradiance Sensorless Intelligent Control Scheme for a Standalone Photovoltaic System under Real Climatic Conditions
Jialan Sun () and
Jinwei Fan ()
Additional contact information
Jialan Sun: College of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China
Jinwei Fan: College of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China
Energies, 2024, vol. 17, issue 18, 1-31
Abstract:
The efficiency of standalone photovoltaic (PV) systems heavily relies on the effectiveness of their maximum power point tracking (MPPT) controller. This study aims to improve the operational efficiency and reliability of standalone PV systems by introducing a novel control scheme, the Immersion and Invariance Neural Network (II-NN). This innovative system integrates a nonlinear estimator of solar irradiance with a neural network (NN) model, eliminating the need for direct irradiance measurements and associated costly sensors. The proposed methodology uses the Immersion and Invariance algorithm to design a nonlinear estimator that leverages the real-time measurements of PV current and voltage to estimate the incident irradiance. The NN then processes this estimated irradiance to determine the MPP voltage accurately. A robust nonlinear controller ensures the PV system operates at the MPP. This approach stands out by managing the nonlinearities, parametric uncertainties, and dynamic variations in PV systems without relying on direct irradiance measurements. The II-NN system was rigorously tested and validated under real climatic conditions, providing a realistic performance assessment. The principal results show that the II-NN system achieves a mean error of 0.0183V and a mean absolute percentage error of 0.3913%, with an overall MPPT efficiency of up to 99.84%. Comparisons with the existing methods, including perturb and observe, incremental conductance, and three other recent algorithms, reveal that the II-NN system outperforms these alternatives. The major conclusion is that the II-NN algorithm significantly enhances the operational efficiency of PV systems while simplifying their implementation, making them more cost-effective and accessible. This study substantially contributes to PV system control by advancing a robust, intelligent, and sensorless MPPT control scheme that maintains high performance even under varying and unpredictable climatic conditions.
Keywords: photovoltaic (PV); maximum power point tracking (MPPT); sensorless intelligent control; immersion and invariance neural network (II-NN) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/18/4627/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/18/4627/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:18:p:4627-:d:1478784
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().