CFD Simulation of Pre-Chamber Spark-Ignition Engines—A Perspective Review
Soo-Jin Jeong ()
Additional contact information
Soo-Jin Jeong: Alternative Fuel Power System R&D Department, Korea Automotive Technology Institute, Cheonan-si 31214, Republic of Korea
Energies, 2024, vol. 17, issue 18, 1-39
Abstract:
The growing demand to reduce emissions of pollutants and CO 2 from internal combustion engines has led to a critical need for the development of ultra-lean burn engines that can maintain combustion stability while mitigating the risk of knock. One of the most effective techniques is the pre-chamber spark-ignition (PCSI) system, where the primary combustion within the cylinder is initiated by high-energy reactive gas jets generated by pilot combustion in the pre-chamber. Due to the complex physical and chemical processes involved in PCSI systems, performing 3D CFD simulations is crucial for in-depth analysis and achieving optimal design parameters. Moreover, combining a detailed CFDs model with a calibrated 0D/1D model is expected to provide a wealth of new insights that are difficult to gather through experimental methods alone, making it an indispensable tool for improving the understanding and optimization of these advanced engine systems. In this context, numerous previous studies have utilized CFD models to optimize key design parameters, including the geometric configuration of the pre-chamber, and to study combustion characteristics under various operating conditions in PCSI engines. Recent studies indicate that several advanced models designed for conventional spark-ignition (SI) engines may not accurately predict performance under the demanding conditions of Turbulent Jet Ignition (TJI) systems, particularly when operating in lean mixtures and environments with strong turbulence–chemistry interactions. This review highlights the pivotal role of Computational Fluid Dynamics (CFDs) in optimizing the design of pre-chamber spark-ignition (PCSI) engines. It explores key case studies and examines both the advantages and challenges of utilizing CFDs, not only as a predictive tool but also as a critical component in the design process for improving PCSI engine performance.
Keywords: pre-chamber ignition engine; turbulent jet ignition; computational fluid dynamics; turbulence–chemistry interaction; wall heat transfer; combustion model; turbulence model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/18/4696/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/18/4696/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:18:p:4696-:d:1482231
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().