EconPapers    
Economics at your fingertips  
 

Identifying Critical Failures in PV Systems Based on PV Inverters’ Monitoring Unit: A Techno-Economic Analysis

Filipe Monteiro, Eduardo Sarquis and Paulo Branco ()
Additional contact information
Filipe Monteiro: Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal
Eduardo Sarquis: IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal
Paulo Branco: IDMEC, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisboa, Portugal

Energies, 2024, vol. 17, issue 18, 1-23

Abstract: Recent advancements in power electronics have significantly improved photovoltaic (PV) inverters by equipping them with sophisticated monitoring capabilities. These enhancements provide economic advantages by facilitating swift failure detection and lowering monitoring costs. Educating users on the economic repercussions of undetected failures in specific inverter monitoring systems is crucial. This paper introduces a novel metric, “Cost of Detection”, which assesses the financial impact of failures, considering the repair expenses and the “quality” of the monitoring system in place. The study analyzed fifteen inverter monitoring solutions, focusing on the variance in alerts generated by the manufacturers’ standard and extra monitoring features. Employing the Failure Mode and Effects Analysis (FMEA) method, alerts were prioritized based on their importance for two PV system scenarios: a low-power residential system (5 kWp) and a medium-power industrial/commercial system (100 kWp). Lisbon, Rome, and Berlin were chosen as the locations for these systems. The economic impact of system failures is evaluated annually for each capacity and city. Given the differing costs and annual yields, comparing their economic performance over time is essential. This comparison utilizes the Net Present Value (NPV), which estimates an investment’s worth by calculating the present value of all cash flows. The investment assessment includes only the costs of inverters and optimizers, excluding O&M expenses, licenses, and fees. Over five years, a higher NPV signifies a more economically advantageous solution. For residential systems, string inverters with optimizers have the highest NPV, surpassing those without optimizers by 17% across all three cities. The optimal monitoring solution in the industrial/commercial context was a string inverter with one optimizer for every two panels. Here, Rome emerged as the location with the most substantial NPV increase of 50%, followed by Berlin with 33% and Lisbon with 28%.

Keywords: failure mode and effects analysis (FMEA); photovoltaic system; reliability; monitoring; PV Inverter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/18/4738/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/18/4738/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:18:p:4738-:d:1483586

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4738-:d:1483586