EconPapers    
Economics at your fingertips  
 

Heat Transfer Enhancement in a 3D-Printed Compact Heat Exchanger

Marcin Kruzel (), Tadeusz Bohdal and Krzysztof Dutkowski
Additional contact information
Marcin Kruzel: Department of Mechanical Engineering, Koszalin University of Technology, 75-453 Koszalin, Poland
Tadeusz Bohdal: Department of Mechanical Engineering, Koszalin University of Technology, 75-453 Koszalin, Poland
Krzysztof Dutkowski: Department of Mechanical Engineering, Koszalin University of Technology, 75-453 Koszalin, Poland

Energies, 2024, vol. 17, issue 18, 1-18

Abstract: The study describes experimental data on thermal tests during the condensation of HFE7100 refrigerant in a compact heat exchanger. The heat exchanger was manufactured using the additive 3D printing in metal. The material is AISI 316L steel. MPCM slurry was used as the heat exchanger coolant, and water was used as the reference medium. The refrigerant was condensed on a bundle of circular tubes made of steel with an internal/external diameter of d i / d e = 2/3 mm, while a mixture of water and phase change materials as the coolant flowed through the channels. Few studies consider the heat exchange in condensation using phase change materials; furthermore, there is also a lack of description of heat exchange in small-sized exchangers printed from metal. Most papers deal with computer research, including flow simulations of heat exchange. The study describes the process of heat exchange enhancement using the phase transition of coolant. Experimental data for the mPCM slurry coolant flow was compared to the data of pure water flow as a reference liquid. The tests were carried out under the following thermal and flow conditions: G = 10–450 [kg m−² s −1 ], q = 2000–25,000 [W m − ²], and t s = 30–40 [°C]. The conducted research provided many quantities describing the heat exchange in compact heat exchangers, including heat exchanger heat power, heat exchange coefficient, and heat exchange coefficients for working media. Based on these factors, the thermal performance of the heat exchanger was described. External characteristics include the value of the thermal power and the heat exchange coefficient as a function of the mass flow density of the working medium and the average logarithmic temperature difference. The performance of the heat exchanger was presented as the dependencies of the heat exchange coefficients on the mass flux density and the heat flux density on the heat exchange surface. The thickness of the refrigerant’s condensate film was also determined. Furthermore, a model was proposed to determine the heat exchange coefficient value for the condensing HFE7100 refrigerant on the outer surface of a bundle of smooth tubes inside a compact heat exchanger. According to experimental data, the calculation results were in good agreement with each other, with a range of 25%. These data can be used to design mini condensers that are widely used in practice.

Keywords: 3D-printed heat exchanger; microencapsulation; phase change materials; refrigerant; overall heat exchange coefficient; heat flux (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/18/4754/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/18/4754/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:18:p:4754-:d:1483856

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4754-:d:1483856