EconPapers    
Economics at your fingertips  
 

Towards Simpler Approaches for Assessing Fuel Efficiency and CO 2 Emissions of Vehicle Engines in Real Traffic Conditions Using On-Board Diagnostic Data

Fredy Rosero, Carlos Xavier Rosero () and Carlos Segovia
Additional contact information
Fredy Rosero: Faculty of Engineering in Applied Sciences, Universidad Técnica del Norte, Ibarra 100102, Ecuador
Carlos Xavier Rosero: Faculty of Engineering in Applied Sciences, Universidad Técnica del Norte, Ibarra 100102, Ecuador
Carlos Segovia: Faculty of Engineering in Applied Sciences, Universidad Técnica del Norte, Ibarra 100102, Ecuador

Energies, 2024, vol. 17, issue 19, 1-18

Abstract: Discrepancies between laboratory vehicle performance and real-world traffic conditions have been reported in numerous studies. In response, emission and fuel regulatory frameworks started incorporating real-world traffic evaluations and vehicle monitoring using portable emissions measurement systems (PEMS) and on-board diagnostic (OBD) data. However, in regions with technical and economic constraints, such as Latin America, the use of PEMS is often limited, highlighting the need for low-cost methodologies to assess vehicle performance. OBD interfaces provide extensive vehicle and engine operational data in this context, offering a valuable alternative for analyzing vehicle performance in real-world conditions. This study proposes a straightforward methodology for assessing vehicle fuel efficiency and carbon dioxide (CO 2 ) emissions under real-world traffic conditions using OBD data. An experimental campaign was conducted with three gasoline-powered passenger vehicles representative of the Ecuadorian fleet, operating as urban taxis in Ibarra, Ecuador. This methodology employs an OBD interface paired with a mobile phone data logging application to capture vehicle kinematics, engine parameters, and fuel consumption. These data were used to develop engine maps and assess vehicle performance using the vehicle-specific power (VSP) approach based on the energy required for vehicle propulsion. Additionally, VSP analysis combined with OBD data facilitated the development of an energy-emission model to characterize fuel consumption and CO 2 emissions for the tested vehicles. The results demonstrate that OBD systems effectively monitor vehicle performance in real-world conditions, offering crucial insights for improving urban transportation sustainability. Consequently, OBD data serve as a critical resource for research supporting decarbonization efforts in Latin America.

Keywords: engine mapping; fuel consumption; CO 2 emissions; urban taxis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/19/4814/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/19/4814/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:19:p:4814-:d:1486059

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4814-:d:1486059