Towards Simpler Approaches for Assessing Fuel Efficiency and CO 2 Emissions of Vehicle Engines in Real Traffic Conditions Using On-Board Diagnostic Data
Fredy Rosero,
Carlos Xavier Rosero () and
Carlos Segovia
Additional contact information
Fredy Rosero: Faculty of Engineering in Applied Sciences, Universidad Técnica del Norte, Ibarra 100102, Ecuador
Carlos Xavier Rosero: Faculty of Engineering in Applied Sciences, Universidad Técnica del Norte, Ibarra 100102, Ecuador
Carlos Segovia: Faculty of Engineering in Applied Sciences, Universidad Técnica del Norte, Ibarra 100102, Ecuador
Energies, 2024, vol. 17, issue 19, 1-18
Abstract:
Discrepancies between laboratory vehicle performance and real-world traffic conditions have been reported in numerous studies. In response, emission and fuel regulatory frameworks started incorporating real-world traffic evaluations and vehicle monitoring using portable emissions measurement systems (PEMS) and on-board diagnostic (OBD) data. However, in regions with technical and economic constraints, such as Latin America, the use of PEMS is often limited, highlighting the need for low-cost methodologies to assess vehicle performance. OBD interfaces provide extensive vehicle and engine operational data in this context, offering a valuable alternative for analyzing vehicle performance in real-world conditions. This study proposes a straightforward methodology for assessing vehicle fuel efficiency and carbon dioxide (CO 2 ) emissions under real-world traffic conditions using OBD data. An experimental campaign was conducted with three gasoline-powered passenger vehicles representative of the Ecuadorian fleet, operating as urban taxis in Ibarra, Ecuador. This methodology employs an OBD interface paired with a mobile phone data logging application to capture vehicle kinematics, engine parameters, and fuel consumption. These data were used to develop engine maps and assess vehicle performance using the vehicle-specific power (VSP) approach based on the energy required for vehicle propulsion. Additionally, VSP analysis combined with OBD data facilitated the development of an energy-emission model to characterize fuel consumption and CO 2 emissions for the tested vehicles. The results demonstrate that OBD systems effectively monitor vehicle performance in real-world conditions, offering crucial insights for improving urban transportation sustainability. Consequently, OBD data serve as a critical resource for research supporting decarbonization efforts in Latin America.
Keywords: engine mapping; fuel consumption; CO 2 emissions; urban taxis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/19/4814/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/19/4814/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:19:p:4814-:d:1486059
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().