Reliability Enhancement of a Double-Switch Single-Ended Primary Inductance–Buck Regulator in a Wind-Driven Permanent Magnet Synchronous Generator Using a Double-Band Hysteresis Current Controller
Walid Emar (),
Mais Alzgool and
Ibrahim Mansour
Additional contact information
Walid Emar: Energy Engineering Department, Faculty of Engineering Technology, Zarqa University, Zarqa 13110, Jordan
Mais Alzgool: Energy Engineering Department, Faculty of Engineering Technology, Zarqa University, Zarqa 13110, Jordan
Ibrahim Mansour: Electrical Engineering Department, Faculty of Engineering Technology, Zarqa University, Zarqa 13110, Jordan
Energies, 2024, vol. 17, issue 19, 1-36
Abstract:
The wind power exchange system (WECS) covered in this paper consists of a voltage source inverter (VSI), a DSSB regulator, and an uncontrolled rectifier. An AC grid or a heavy inductive or resistive load (RL) can be supplied by this system. The DSSB is a recently developed DC-DC regulator consisting of an improved single-ended primary inductance regulator (SEPIC) followed by a buck regulator. It has a peak efficiency of 95–98% and a voltage gain of ( D ( 1 + D ) / ( 1 − D ) . where D is the regulator transistor’s on-to-off switching ratio. The proposed regulator improves the voltage stability and MPPT strategy (optimal or maximum power-point tracking). The combination of the DSSB and the proposed regulator improves the efficiency of the system and increases the power output of the wind turbine by reducing the harmonics of the system voltages and current. This method also reduces the influence of air density as well as wind speed variations on the MPPT strategy. Classical proportional–integral (PI) controllers are used in conjunction with a vector-controlled voltage source inverter, which adheres to the suggested DSSB regulator, to control the PMSM speed and d-q axis currents and to correct for current error. In addition to the vector-controlled voltage source inverter (which follows the recommended DSSB regulator), classical proportional–integral controllers are used to regulate the PMSM speed and d-q axis currents, and to correct current errors. In addition, a model Predictive Controller (PPC) is used with the pitch angle control (PAC) of WECS. This is done to show how well the proposed WECS (WECS with DSSB regulator) enhances voltage stability. A software-based simulation (MATLAB/Simulink) evaluates the results for ideal and unoptimized parameters of the WT and WECS under a variety of conditions. The results of the simulation show an increase in MPPT precision and output power performance.
Keywords: wind turbine (WT); synchronous generator with permanently enduring magnets (PMSG); double switch SEPIC-buck regulator (DSSB); hysteresis current-mode control; dq-current control; wind power exchange system (WECS) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/19/4868/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/19/4868/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:19:p:4868-:d:1487830
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().