EconPapers    
Economics at your fingertips  
 

Design and Optimization of a Gorlov-Type Hydrokinetic Turbine Array for Energy Generation Using Response Surface Methodology

Andrés Chalaca, Laura Velásquez, Ainhoa Rubio-Clemente () and Edwin Chica ()
Additional contact information
Andrés Chalaca: Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
Laura Velásquez: Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
Ainhoa Rubio-Clemente: Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
Edwin Chica: Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia

Energies, 2024, vol. 17, issue 19, 1-21

Abstract: Hydrokinetic arrays, or farms, offer a promising solution to the global energy crisis by enabling cost-effective and environmentally friendly energy generation in locations with water flows. This paper presents research focused on the design and optimization of a Gorlov-type vertical-axis hydrokinetic turbine array for power generation. The study involved (i) numerical simulations using computational fluid dynamics (CFD) software with the six degrees of freedom (6DoF) tool, (ii) optimization techniques such as response surface methodology, and (iii) experimental testing in natural environments. The objective was to develop an efficient system with low manufacturing and maintenance costs. A key finding was that the separation distance between rotors, both along and across the fluid flow, is a critical parameter in designing hydrokinetic arrays. For this study, a triangular array configuration, termed Triframe, was used, consisting of three Gorlov-type turbines with four blades each. The optimization process led to separation distances based on the diameter ( D ) of the turbines, with 15.9672 D along the fluid flow ( X ) and 4.15719 D across the flow ( Y ). Finally, an experimental scale model of the hydrokinetic array was successfully constructed and characterized, demonstrating the effectiveness of the optimization process described in this study.

Keywords: hydrokinetic array; hydrokinetic farm; Gorlov-type hydrokinetic turbine; energy generation; renewable energy; response surface methodology (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/19/4870/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/19/4870/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:19:p:4870-:d:1487888

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4870-:d:1487888