EconPapers    
Economics at your fingertips  
 

Design of Flow Fields for High-Temperature PEM Fuel Cells Using Computational Fluid Dynamics

Prantik Roy Chowdhury and Adam C. Gladen ()
Additional contact information
Prantik Roy Chowdhury: Department of Mechanical Engineering, North Dakota State University, 1319 Centennial Blvd., 111 Dolve Hall, Fargo, ND 58102, USA
Adam C. Gladen: Department of Mechanical Engineering, North Dakota State University, 1319 Centennial Blvd., 111 Dolve Hall, Fargo, ND 58102, USA

Energies, 2024, vol. 17, issue 19, 1-27

Abstract: This study proposes novel and modified conventional flow fields for a high-temperature PEM fuel cell, and predicts the fluid dynamic behavior with a 3D, computational fluid dynamics model. Five base flow field patterns (FFPs) are selected: a 4-channel serpentine, a hybrid design, a 2-channel spiral, a dual-triangle sandwich, and a parallel pin-type flow field. For each base FFP, sub-patterns are developed through modification of the channels and ribs. The 4-channel serpentine is taken as the state-of-the-art reference flow field. Simulations are carried out at two different mass flow rates. The result shows that the incorporation of a dead end in flow channels or the merging of channels into a single channel before connecting to the outlet enhances the average and maximum GDL mass flux, but it also increases the pressure drop. The parallel pin-type design-3 and dual-triangle sandwich design-1 exhibit a more even distribution but yield a lower average GDL mass flux than the 4-channel serpentine, which could be beneficial for reducing MEA degradation and thus used at low load conditions where a high mass flux is not needed. In contrast, the uniform hybrid design and 2-channel spiral design-2 provide a higher average and maximum mass flux with a more non-uniform distribution and greater pressure drop. The high average GDL mass flux would be beneficial during high load conditions to ensure enough reactants reach the catalyst.

Keywords: fuel cell; high temperature; flow field pattern; computational fluid dynamic; gas distribution (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/19/4898/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/19/4898/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:19:p:4898-:d:1489186

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4898-:d:1489186