Design of Flow Fields for High-Temperature PEM Fuel Cells Using Computational Fluid Dynamics
Prantik Roy Chowdhury and
Adam C. Gladen ()
Additional contact information
Prantik Roy Chowdhury: Department of Mechanical Engineering, North Dakota State University, 1319 Centennial Blvd., 111 Dolve Hall, Fargo, ND 58102, USA
Adam C. Gladen: Department of Mechanical Engineering, North Dakota State University, 1319 Centennial Blvd., 111 Dolve Hall, Fargo, ND 58102, USA
Energies, 2024, vol. 17, issue 19, 1-27
Abstract:
This study proposes novel and modified conventional flow fields for a high-temperature PEM fuel cell, and predicts the fluid dynamic behavior with a 3D, computational fluid dynamics model. Five base flow field patterns (FFPs) are selected: a 4-channel serpentine, a hybrid design, a 2-channel spiral, a dual-triangle sandwich, and a parallel pin-type flow field. For each base FFP, sub-patterns are developed through modification of the channels and ribs. The 4-channel serpentine is taken as the state-of-the-art reference flow field. Simulations are carried out at two different mass flow rates. The result shows that the incorporation of a dead end in flow channels or the merging of channels into a single channel before connecting to the outlet enhances the average and maximum GDL mass flux, but it also increases the pressure drop. The parallel pin-type design-3 and dual-triangle sandwich design-1 exhibit a more even distribution but yield a lower average GDL mass flux than the 4-channel serpentine, which could be beneficial for reducing MEA degradation and thus used at low load conditions where a high mass flux is not needed. In contrast, the uniform hybrid design and 2-channel spiral design-2 provide a higher average and maximum mass flux with a more non-uniform distribution and greater pressure drop. The high average GDL mass flux would be beneficial during high load conditions to ensure enough reactants reach the catalyst.
Keywords: fuel cell; high temperature; flow field pattern; computational fluid dynamic; gas distribution (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/19/4898/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/19/4898/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:19:p:4898-:d:1489186
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().