Optimizing Energy Efficiency in a Peltier-Module-Based Cooling Microunit through Selected Control Algorithms
Stanisław Lis,
Jarosław Knaga,
Sławomir Kurpaska,
Stanisław Famielec (),
Piotr Łyszczarz and
Marek Machaczka
Additional contact information
Stanisław Lis: Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka Street 116b, 30-149 Kraków, Poland
Jarosław Knaga: Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka Street 116b, 30-149 Kraków, Poland
Sławomir Kurpaska: Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka Street 116b, 30-149 Kraków, Poland
Stanisław Famielec: Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka Street 116b, 30-149 Kraków, Poland
Piotr Łyszczarz: Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka Street 116b, 30-149 Kraków, Poland
Marek Machaczka: Deep Blue Solutions, Baranieckiego Street 3, 30-227 Kraków, Poland
Energies, 2024, vol. 17, issue 20, 1-22
Abstract:
This research covers the process of heat exchange in a cooling microunit equipped with Peltier modules. We put forward that by choosing the control algorithm, not only the control signal quality in such a system is affected but also its energy consumption. Tests were carried out for the following algorithms: relay, parallel PID, serial PID, and PID + DD. An experimental setup was developed that allowed for recording the step response of the investigated plant. Next, the transfer function of the plant was formulated, and a simulation model of the control system was developed using the MatLab ® -Simulink environment. Through computer simulation for a selected system operation procedure (cooling down to three set temperatures and maintaining them for 5000 s), the quality of control signals and the influence on energy use were investigated. The cumulative energy value for each of the algorithms and the cumulative difference in energy consumption between the controllers were calculated. The best results in terms of control quality were obtained for the parallel PID controller. The lowest energy consumption was observed for the relay controller, with the difference compared to other investigated controllers reaching 4.3% and 9.0%, without and with the presence of signal disturbances, respectively.
Keywords: control; Peltier module; energy-use optimization; computer modeling; computer simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5031/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5031/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5031-:d:1495708
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().