Multi-Objetive Dispatching in Multi-Area Power Systems Using the Fuzzy Satisficing Method
Paspuel Cristian and
Luis Tipán ()
Additional contact information
Paspuel Cristian: Engineering Department, Universidad Politecnica Salesiana, South Campus, Av. Rumichaca and Av. M. Valverde, Quito 170702, Ecuador
Luis Tipán: Engineering Department, Universidad Politecnica Salesiana, South Campus, Av. Rumichaca and Av. M. Valverde, Quito 170702, Ecuador
Energies, 2024, vol. 17, issue 20, 1-36
Abstract:
The traditional mathematical models for solving the economic dispatch problem at the generation level primarily focus on minimizing overall operational costs while ensuring demand is met across various periods. However, contemporary power systems integrate a diverse mix of generators from both conventional and renewable energy sources, contributing to economically efficient energy production and playing a pivotal role in reducing greenhouse gas emissions. As the complexity of power systems increases, the scope of economic dispatch must expand to address demand across multiple regions, incorporating a range of objective functions that optimize energy resource utilization, reduce costs, and achieve superior economic and technical outcomes. This paper, therefore, proposes an advanced optimization model designed to determine the hourly power output of various generation units distributed across multiple areas within the power system. The model satisfies the dual objective functions and adheres to stringent technical constraints, effectively framing the problem as a nonlinear programming challenge. Furthermore, an in-depth analysis of the resulting and exchanged energy quantities demonstrates that the model guarantees the hourly demand. Significantly, the system’s efficiency can be further enhanced by increasing the capacity of the interconnection links between areas, thereby generating additional savings that can be reinvested into expanding the links’ capacity. Moreover, the multi-objective model excels not only in meeting the proposed objective functions but also in optimizing energy exchange across the system. This optimization is applicable to various types of energy, including thermal and renewable sources, even those characterized by uncertainty in their primary resources. The model’s ability to effectively manage such uncertainties underscores its robustness, instilling confidence in its applicability and reliability across diverse energy scenarios. This adaptability makes the model a significant contribution to the field, offering a sophisticated tool for optimizing multi-area power systems in a way that balances economic, technical, and environmental considerations.
Keywords: fuzzy satisficing method; power generation dispatch; renewable energy sources; Pareto optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5044/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5044/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5044-:d:1496207
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().