EconPapers    
Economics at your fingertips  
 

Application of Dual-Tree Complex Wavelet Transform in Islanding Detection for a Hybrid AC/DC Microgrid with Multiple Distributed Generators

Ernest Igbineweka and Sunetra Chowdhury ()
Additional contact information
Ernest Igbineweka: Department of Electrical Engineering, University of Cape Town, Cape Town 7700, South Africa
Sunetra Chowdhury: Department of Electrical Engineering, University of Cape Town, Cape Town 7700, South Africa

Energies, 2024, vol. 17, issue 20, 1-33

Abstract: This paper presents the design and validation of a novel adaptive islanding detection method (AIDM) for a hybrid AC/DC microgrid network using a combination of Artificial Intelligence (AI) and Signal Processing (SP) approaches. The proposed AIDM is aimed to detect and discriminate between the different fault/disturbance conditions that result in islanding and/or non-islanding conditions in a hybrid microgrid. For the islanding and non-islanding conditions detection by the AIDM, firstly, fault/disturbance signals are obtained from a test microgrid. Secondly, these signals are decomposed using Dual-Tree Complex Wavelet Transform. Thirdly, a Synthetic Minority Oversampling Technique (SMOTE) is applied for data preprocessing to increase the accuracy of the classifier. Finally, an artificial neural network (ANN) is used as the classifier for training and testing the proposed AIDM for different microgrid configurations and event scenarios. The proposed method is tested with different data categories from three different microgrid test systems with different scenarios. All modeling and simulations are executed in MATLAB Simulink Version 2023a. Results indicate that the proposed scheme could detect and discriminate between islanding and non-islanding conditions accurately in terms of dependability, precision, and accuracy. An average accuracy of 99–100% could be achieved when tested and validated with microgrid networks adapted from IEEE 13-bus systems.

Keywords: artificial neural network; adaptive islanding detection method; Dual-Tree Complex Wavelet Transform; islanding detection approach; hybrid AC/DC microgrid; Synthetic Minority Oversampling Technique (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5133/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5133/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5133-:d:1499432

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5133-:d:1499432