EconPapers    
Economics at your fingertips  
 

U-Net Semantic Segmentation-Based Calorific Value Estimation of Straw Multifuels for Combined Heat and Power Generation Processes

Lianming Li, Zhiwei Wang and Defeng He ()
Additional contact information
Lianming Li: Jiaxing Newjies Thermal Power Co., Ltd., Jiaxing 314016, China
Zhiwei Wang: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Defeng He: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Energies, 2024, vol. 17, issue 20, 1-16

Abstract: This paper proposes a system for real-time estimation of the calorific value of mixed straw fuels based on an improved U-Net semantic segmentation model. This system aims to address the uncertainty in heat and power generation per unit time in combined heat and power generation (CHPG) systems caused by fluctuations in the calorific value of straw fuels. The system integrates an industrial camera, moisture detector, and quality sensors to capture images of the multi-fuel straw. It applies the improved U-Net segmentation network for semantic segmentation of the images, accurately calculating the proportion of each type of straw. The improved U-Net network introduces a self-attention mechanism in the skip connections of the final layer of the encoder, replacing traditional convolutions by depthwise separable convolutions, as well as replacing the traditional convolutional bottleneck layers with Transformer encoder. These changes ensure that the model achieves high segmentation accuracy and strong generalization capability while maintaining good real-time performance. The semantic segmentation results of the straw images are used to calculate the proportions of different types of straw and, combined with moisture content and quality data, the calorific value of the mixed fuel is estimated in real time based on the elemental composition of each straw type. Validation using images captured from an actual thermal power plant shows that, under the same conditions, the proposed model has only a 0.2% decrease in accuracy compared to the traditional U-Net segmentation network, while the number of parameters is significantly reduced by 74%, and inference speed is improved 23%.

Keywords: combined heat and power generation (CHPG); calorific value prediction; mixed straw fuels; U-Net; semantic segmentation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5143/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5143/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5143-:d:1499806

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5143-:d:1499806