Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System
Ivar Kotte,
Emma Snaak and
Wilfried van Sark ()
Additional contact information
Ivar Kotte: Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
Emma Snaak: Solyx Energy B.V. Smitspol 15M, 3861 RS Nijkerk, The Netherlands
Wilfried van Sark: Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
Energies, 2024, vol. 17, issue 20, 1-19
Abstract:
PV technology has become widespread in the Netherlands, reaching a cumulative installed capacity of 22.4 GWp in 2023 and ranking second in the world for solar PV per capita at 1268 W/capita. Despite this growth, there is an inherent discrepancy between energy supply and demand during the day. While the netting system in the Netherlands can currently negate the economic drawbacks of this discrepancy, grid congestion and imbalanced electricity prices show that improvements are highly desirable for the sustainability of electricity grids. This research analyzes the effectiveness of a Power-to-Domestic-Hot-Water (P2DHW) system at improving the utilization of excess PV electricity in Dutch households and compares it to similar technologies. The results show that the example P2DHW system, the WaterAccu, compares favorably as a low cost and flexible solution. In particular, for twelve different households differing in size (1–6 occupants), PV capacity (2.4–8 kWp), and size of hot water storage boiler (50–300 L), it is shown that the total economic benefits for the period 2024–2032 vary from −€13 to €3055, assuming the current net metering scheme is abolished in 2027. Only for large households with low PV capacity are the benefits a little negative. Based on a multi-criteria analysis, it is found that the WaterAccu is the cheapest option compared to other storage options, such as a home battery, a heat pump boiler, and a solar boiler. A sensitivity study demonstrated that these results are overall robust. Furthermore, the WaterAccu has a positive societal impact owing to its peak shaving potential. Further research should focus on the potential of the technology to decrease grid congestion when implemented on a neighborhood scale.
Keywords: energy storage; water heating; photovoltaics; energy management; cost effectiveness (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5154/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5154/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5154-:d:1500113
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().