Neutronics Analysis on High-Temperature Gas-Cooled Pebble Bed Reactors by Coupling Monte Carlo Method and Discrete Element Method
Kashminder S. Mehta,
Braden Goddard and
Zeyun Wu ()
Additional contact information
Kashminder S. Mehta: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
Braden Goddard: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
Zeyun Wu: Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
Energies, 2024, vol. 17, issue 20, 1-20
Abstract:
The High-Temperature Gas-Cooled Pebble Bed Reactor (HTG-PBR) is notable in the advanced reactor realm for its online refueling capabilities and inherent safety features. However, the multiphysics coupling nature of HTG-PBR, involving neutronic analysis, pebble flow movement, and thermo-fluid dynamics, creates significant challenges for its development, optimization, and safety analysis. This study focuses on the high-fidelity neutronic modelling and analysis of HTG-PBR with an emphasis on achieving an equilibrium state of the reactor for long-term operations. Computational approaches are developed to perform high-fidelity neutronics analysis by coupling the superior modelling capacities of the Monte Carlo Method (MCM) and Discrete Element Method (DEM). The MCM-based code OpenMC and the DEM-based code LIGGGHTS are employed to simulate the neutron transport and pebble movement phenomena in the reactor, respectively. To improve the computational efficiency to expedite the equilibrium core search process, the reactor core is discretized by grouping pebbles in axial and radial directions with the incorporation of the pebble position information from DEM simulations. The OpenMC model is modified to integrate fuel circulation and fresh fuel loading. All of these measures ultimately contribute to a successful generation of an equilibrium core for HTG-PBR. For demonstration, X-energy’s Xe-100 reactor—a 165 MW thermal power HTG-PBR—is used as the model reactor in this study. Starting with a reactor core loaded with all fresh pebbles, the equilibrium core search process indicates the continuous loading of fresh fuel is required to sustain the reactor operation after 1000 days of fuel depletion with depleted fuel circulation. Additionally, the model predicts 213 fresh pebbles are needed to add to the top layer of the reactor to ensure the k eff does not reduce below the assumed reactivity limit of 1.01.
Keywords: high-temperature gas-cooled pebble bed reactor; Monte Carlo Method; discrete element method; equilibrium state; neutronics analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5188/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5188/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5188-:d:1501542
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().