EconPapers    
Economics at your fingertips  
 

The Emissions of a Compression-Ignition Engine Fuelled by a Mixture of Crude Oil and Biodiesel from the Lipids Accumulated in the Waste Glycerol-Fed Culture of Schizochytrium sp

Marcin Zieliński, Marcin Dębowski (), Joanna Kazimierowicz and Ryszard Michalski
Additional contact information
Marcin Zieliński: Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland
Marcin Dębowski: Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland
Joanna Kazimierowicz: Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
Ryszard Michalski: Department of Vehicle and Machine Construction and Operation, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland

Energies, 2024, vol. 17, issue 20, 1-23

Abstract: Microalgae are considered to be a promising and prospective source of lipids for the production of biocomponents for conventional liquid fuels. The available sources contain a lot of information about the cultivation of biomass and the amounts and composition of the resulting bio-oils. However, there is a lack of reliable and verified data on the impact of fuel blends based on microalgae biodiesel on the quality of the emitted exhaust gas. Therefore, the main objective of the study was to present the emission characteristics of a compression-ignition engine fuelled with a blend of diesel fuel and biodiesel produced from the lipids accumulated in the biomass of a heterotrophic culture of Schizochytrium sp. The final concentrations of microalgal biomass and lipids in the culture were 140.7 ± 13.9 g/L and 58.2 ± 1.1 g/L, respectively. The composition of fatty acids in the lipid fraction was dominated by decosahexaenoic acid (43.8 ± 2.8%) and palmitic acid (40.4 ± 2.8%). All parameters of the bio-oil met the requirements of the EN 14214 standard. It was found that the use of bio-components allowed lower concentrations of hydrocarbons in the exhaust gas, ranging between 33 ± 2 ppm and 38 ± 7 ppm, depending on the load level of the engine. For smoke opacity, lower emissions were found in the range of 50–100% engine load levels, where the observed content was between 23 ± 4% and 53 ± 8%.

Keywords: waste glycerol; heterotrophic culture; Schizochytrium sp.; lipid accumulation; biofuel; emission; compression-ignition engine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/20/5193/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/20/5193/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:20:p:5193-:d:1501663

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5193-:d:1501663