EconPapers    
Economics at your fingertips  
 

Numerical Investigation of Solar Collector Performance with Encapsulated PCM: A Transient, 3D Approach

Malik Adnan Faisal, Amin Rahmani and Mohammad Akrami ()
Additional contact information
Malik Adnan Faisal: Ministry of Electricity, Hilla 51001, Iraq
Amin Rahmani: Department of Engineering, University of Exeter, Exeter EX4 4PJ, UK
Mohammad Akrami: Department of Engineering, University of Exeter, Exeter EX4 4PJ, UK

Energies, 2024, vol. 17, issue 21, 1-19

Abstract: This study presents a comprehensive numerical investigation into the thermal performance of solar collectors integrated with encapsulated phase change materials (PCMs) using a transient three-dimensional (3D) approach. The performance of two distinct PCMs—paraffin wax and RT60—was evaluated under varying operational conditions, including seasonal variations, inlet pipe velocities, and inlet temperatures. The results indicate that paraffin wax exhibits a higher peak temperature, reaching approximately 360 K, compared to RT60’s peak of 345 K, making paraffin wax more effective for consistent thermal energy storage. Paraffin wax also maintained higher fluid fractions, with a maximum of 0.9 in summer, indicating superior heat absorption and retention capabilities. In contrast, RT60 demonstrated a quicker phase transition, fully liquefying at a lower fluid fraction, which is advantageous for rapid heat release. Seasonal variations significantly impacted system efficiency, with the highest efficiency observed in June at 365 K and the lowest in December at 340 K. The study also found that lower inlet velocities (e.g., 0.25 L/s) significantly improved heat retention, resulting in higher outlet temperatures, while increasing the inlet temperature from 290 K to 310 K led to a marked increase in outlet temperatures throughout the day. These findings underscore the importance of optimizing PCM selection, inlet velocity, and temperature in enhancing the performance of solar thermal systems, offering quantitative insights that contribute to the development of more efficient and reliable renewable energy solutions.

Keywords: solar collector; phase change materials (PCMs); thermal management; solar thermal systems; fluid fraction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5243/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5243/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5243-:d:1503740

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5243-:d:1503740