Including Lifetime Hydraulic Turbine Cost into Short-Term Hybrid Scheduling of Hydro and Solar
Jiehong Kong (),
Igor Iliev and
Hans Ivar Skjelbred
Additional contact information
Jiehong Kong: Department of Energy Systems, SINTEF Energy Research, Sem Sælands vei 11, 7034 Trondheim, Norway
Igor Iliev: Aker Solutions Hydropower AS, Oksenøyveien 8, 1366 Lysaker, Norway
Hans Ivar Skjelbred: Department of Energy Systems, SINTEF Energy Research, Sem Sælands vei 11, 7034 Trondheim, Norway
Energies, 2024, vol. 17, issue 21, 1-17
Abstract:
In traditional short-term hydropower scheduling problems, which usually determine the optimal power generation schedules within one week, the off-design zone of a hydraulic turbine is modeled as a forbidden zone due to the significantly increased risk of turbine damage when operating within this zone. However, it is still plausible to occasionally operate within this zone for short durations under real-world circumstances. With the integration of Variable Renewable Energy (VRE) into the power system, hydropower, as a dispatchable energy resource, operates complementarily with VRE to smooth overall power generation and enhance system performance. The rapid and frequent adjustments in output power make it inevitable for the hydraulic turbine to operate in the off-design zone. This paper introduces the operating zones associated with various production costs derived from fatigue analysis of the hydraulic turbine and calculated based on the turbine replacement cost. These costs are incorporated into a short-term hybrid scheduling tool based on Mixed Integer Linear Programming (MILP). Including production costs in the optimization problem shifts the turbine’s working point from a high-cost zone to a low-cost zone. The resulting production schedule for a Hydro-Solar hybrid power system considers not only short-term economic factors such as day-ahead market prices and water value but also lifetime hydraulic turbine cost, leading to a more comprehensive calculation of the production plan. This research provides valuable insights into the sustainable operation of hydropower plants, balancing short-term profits with lifetime hydraulic turbine costs.
Keywords: accumulated damage; short-term hybrid scheduling; turbine cost; production cost; fatigue load (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5246/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5246/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5246-:d:1503719
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().