Advanced Modeling of Hydrogen Turbines Using Generalized Conformable Calculus
Oscar Oswaldo Sánchez-Sánchez,
Josué Neftalí Gutiérrez-Corona,
Marco Antonio Polo-Labarrios and
Guillermo Fernandez-Anaya ()
Additional contact information
Oscar Oswaldo Sánchez-Sánchez: Departament of Physics and Mathematics, Universidad Iberoamericana, Prolongación Paseo de Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico
Josué Neftalí Gutiérrez-Corona: Departament of Physics and Mathematics, Universidad Iberoamericana, Prolongación Paseo de Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico
Marco Antonio Polo-Labarrios: Departament of Physics and Mathematics, Universidad Iberoamericana, Prolongación Paseo de Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico
Guillermo Fernandez-Anaya: Departament of Physics and Mathematics, Universidad Iberoamericana, Prolongación Paseo de Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico
Energies, 2024, vol. 17, issue 21, 1-30
Abstract:
This article addresses critical challenges in the transition to clean energy sources by highlighting the importance of advanced mathematical modeling and computational techniques in turbine design and operation. Specifically, we extend and generalize the work of Camporeale to advance the modeling of hydrogen turbine systems. By utilizing conformable calculus, we develop dynamic equations that analyze key aspects of turbine performance, including temperature variations in turbine blades, angular velocities of rotating shafts, and mass–energy balances within the plenum and combustion chamber. Furthermore, we incorporate Kirchhoff’s equation in its generalized conformable integral form, enhancing the precision of energy balance calculations and improving the representation of heat transfer processes in the combustion chamber. This methodology introduces novel perspectives in hydrogen turbine research, contributing to the advancement of sustainable and efficient technologies. Our comprehensive approach aims to provide more accurate and efficient predictions of turbine behavior, thereby impacting the design and optimization of hydrogen-based clean energy systems.
Keywords: generalized conformable derivative; conformable calculus; hydrogen turbine; numerical methods; transition to clean energy sources (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5260/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5260/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5260-:d:1504157
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().